DTU DTU Electro

Department of Electrical and Photonics Engineering
o

o
o

Study of Early Exit Neural Networks
for Computer Vision

Jonathan Mikler A.

Study of Early Exit Neural Networks for Computer Vision

M.Sc Thesis
March 2025

By
Jonathan Mikler A.

Copyright: Reproduction of this publication in whole or in part must include the
customary bibliographic citation, including author attribution, report
title, etc.

Cover photo: Al image. Generated by author

Published by: DTU, Department of Electrical and Photonics Engineering, rsteds
Plads, Building 326, 2800 Kgs. Lyngby, Denmark

https://electro.dtu.dk/

https://electro.dtu.dk/

Approval

This thesis has been prepared over five months at the Department of Electrical and Photonics
Engineering, at the Technical University of Denmark, DTU, in partial fulfillment for the
degree Master of Science in Engineering, MSc Eng.

Disclaimer

In the spirit of academic transparency, I hereby disclose the use of Generative Artificial
Intelligence tools throughout the preparation of this thesis. These tools were employed
primarily to enhance textual clarity, assist in document structuring, and provide support
in code development and implementation. These tools were employed primarily to enhance
textual clarity, assist in document structuring, and provide support in code development and
implementation. All external sources and references are appropriately cited in accordance
with academic citation standards. This declaration aims to maintain full intellectual honesty
and transparency regarding the research and writing process.

Jonathan Mikler A.
Student Number: S222962

Date: 20 August 2025

Acknowledgements
As this is the final day of my thesis, and after working non-stop for too long, I'll
keep my gratitude brief.

Firstly I am most grateful to my supervisor Prof. Lazaros Nalpantidis, for the
guidance and the insights along this work. I owe an equal amount of gratitude
to Fabio Montello, my co-supervisor. This project demanded a lot of turns and
jumps and his experience kept the ship well oriented.

This project would not have been possible without Open-Source software. The
power of openly sharing has positive consequences more significant than we might
think. I am grateful to those who help and advocate for this, as I have seen here
its benefits first hand.

v

To my family; to all of you, in every corner of the planet.

Study of Early Exit Neural Networks for Computer Vision DTU

Abstract

This thesis investigates deployment challenges and performance characteristics of
early-exit neural networks for computer vision, focusing on the Lightweight Vision
Transformer with Early Exit (LGViT) model.

The research addresses two aims: making early-exit models production-
ready and expanding understanding of their performance. The work presents a
redesigned implementation (EEVIT) optimized for ONNX export using PyTorch’s
dynamic behavior capturing features.

Four studies are conducted: profiling analysis identifying bottlenecks, evaluation
of confidence threshold effects, platform benchmarking across computing environ-
ments, and class-wise performance analysis revealing relationships between visual
features and exit behavior.

Results show EEVIT achieves a 2.08x speedup with 87.31% accuracy on
CIFAR100. The study reveals insights about implementation penalties, optimal
threshold configurations, class-specific patterns, and platform-dependent behavior
for deploying early-exit architectures in resource-constrained environments.

vi

Study of Early Exit Neural Networks for Computer Vision DTU

Table Of Contents

ADDProval ... 3
Disclaimer e 3
Acknowledgements iv
ADStract ... vi
1 Introduction 8
2 Background 11
2.1 Transformers in Computer Visiono .. 11
2.2 Early Exits in Deep Learning for Computer Vision 15
3 Tools of the Tradeo e 19
3. OINN X 19
3.2 PyTorch ... 20
4 Related Work 23
4.1 Barly Models 23
4.2 Vision Transformers with Early Exit ooo.. 23
4.3 The ‘LGVIT model e 24
D ResSUItS ..o 33
5.1 Terminology e 33
5.2 Implementation results i 34
5.3 Benchmarking 43
6 DISCUSSION . ..o ottt 59
6.1 On Deploymento .o 59
6.2 On Performance 59
6.3 General Remarks 61
T Future Work . ..o 63
Bibliography 64
AN o 67
7.1 EEVIT UML diagram of components 67
7.2 Profiling additional results 68

vii

Study of Early Exit Neural Networks for Computer Vision DTU

1 Introduction

Deep learning models have enjoyed widespread success in computer vision tasks
due to their impressive performance(Azizov et al., 2024). However, this success has
been accompanied by an increase in size and computational complexity, leading
to ever-growing computational requirements.

On one side, a clear trend in size increase can be seen in the increase in layer
that State of the Art CNN models, growing from 8 layers to 19 layers to 152 layers
(AlexNet, VGGNet and ResNet respectively) (Teerapittayanon et al., 2016). A
more recent concern, related to the widespread adoption of the transformer model
(Azizov et al., 2024), is that the computational complexity of the self-attention
mechanism (the heart of the transformer) scales quadratically with sequence
length, expressed as O(n?) (Keles et al., 2022)

This trend makes powerful models less suitable for environments with limited
computing resources and low inference latency needs—precisely the conditions
found in edge computing devices used in robotics applications and other
domains(Teerapittayanon et al., 2016).

Different solutions have been proposed to render more efficient the ViTs. Among
them, pruning and quantization. Pruning aims to identify and remove less impor-
tant computations while quantization reduces the representation precision of the
model’s parameters. Rethinking the attention function has been also proposed,
with the goal of reducing its computational complexity — Among them the
Linformer (Wang et al., 2020) and the SWIN transformer (Liu et al., 2021).

Parallel to these approaches, other techniques break the assumption of a fixed
forward computation graph. Collectively, the networks produced by these methods
can be called Dynamic Neural Networks. These models selectively activate only
relevant sub-graphs of the architecture based on input complexity, potentially
offering more substantial efficiency gains for varied inputs(Montello et al., 2025).

Neural network models often encounter significant variations in task complexity
across different dataset samples. Traditional neural networks aim to generalize
well over the entire dataset, but this can result in over-parameterization for a large
subset of samples that require less computation (Scardapane et al., 2020).

Research has shown that Convolutional Neural Networks (CNNs) can extract
meaningful features in their early layers, which are often sufficient for confident
classification ((Panda et al., 2015)). However, unnecessary processing of sample
information can lead to overthinking, where initially useful representations become
corrupted due to excessive computation, resulting in reduced confidence or incor-
rect predictions ((Kaya & Dumitras, 2018)).

Early-exit Neural Networks represent a promising model design approach that
aims to improve latency while minimizing accuracy compromises. Conceptually,
neural network models are computational graphs; the early-exit approach attaches

8 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

additional computational steps to the base graph to produce early outputs with
lower latency than the unmodified model. Then, if the confidence in the output
is satisfactory, it is taken as the model’s output, else the model continues its
computation onto the next exit. A generic schematic description is presented in
Figure 1.

))
h;
hi-1 —> Is —> fir1 > hiv1
(from the (to the upper
lower layer) layer)
E Q

k_) ¢ P> Yi (local exit)

Figure 1: Graphical depiction of a generic early-exit in neural network architec-
tures. taken from (Scardapane et al., 2020)

Despite their potential, adoption of early-exit models in production environments
has been challenging due to the dynamic nature of their computational graph.
Production environments, especially in edge computing scenarios, typically require
minimal dependencies—both to simplify monitoring and updates, and to meet
specific domain requirements®.

Furthermore, production environments benefit from remaining agnostic to
the development frameworks used to build the models they employ. This frame-
work-agnosticism allows for seamless replacement of older models with newer,
better-performing ones. The ONNX (Open Neural Network eXchange) standard
addresses this need by providing a framework-independent representation for
neural networks.

While neural networks are typically built using powerful frameworks like
PyTorch or TensorFlow that come with a cornucopia of development tools, these
same frameworks represent undesirable dependencies in production. Converting
models created with any framework to ONNX format simplifies their adoption in
framework-agnostic production environments.

This context highlights the adoption challenges for early-exit models: until
recently, capturing their dynamic nature in ONNX was very cumbersome, when it
was not impossible. For PyTorch, for instance, flow control operations were only

'Think for example of use cases were safety is of critical consideration, and some libraries used
for the business logic do meet the performance requirements

9/ 69

Study of Early Exit Neural Networks for Computer Vision DTU

added to exportable ONNX operations earlier this year?. Consequently, industries
that could benefit from early-exit models’ performance breakthroughs have been
missing out the fruits of their work.

This thesis investigates one of such models, Lightweight Vision Transformer with
Early Ezit (LGViT) (Xu et al., 2023), one of the latest high-performing early-exit
models, and the efforts required to make it production-ready. This works sets two
goals: (1) To assess and implement the necessary efforts to port developed early-
exit models into a production environment and (2) To widen the understanding
of the performance nature of these models, with the intention of gaining insights
in how they can be extended to other computer vision problems.

It begins by dissecting the logic implemented in the original work and presents a
redesign optimized for ONNX exportability. Following this, a new implementation
built from scratch is presented, compatible with the recently released dynamic
behavior capturing features in PyTorch. With this newly exportable model, four
performance studies are conducted:

1. A profiling study to identify performance bottlenecks, yielding insights for
implementation decisions

2. An short analysis of the confidence threshold to better understand its role in
performance.

3. A platform performance benchmark in a production environment (using an
Nvidia Jetson Orin computer) and how it compares to a consumer computer.

4. A class performance analysis using the CIFAR100 dataset, providing insights
into which input types yield the best results and what can be inferred about
their visual features

The document is structures as follows: Section 2 presents the algorithms upon
which the model leverages, followed by Section 3 with an overview of the most
relevant commercial technologies. Section 4 presented both the recount of the
related work done in the realm of early-exit for computer vision, and delves into
the logic implementation of the original LGViT work, followed by highlighting its
setbacks for porting. Section 5 presents the new implementation design for LGViT,
where dynamic behavior export to ONNX is possible, leveraging on recently
released dynamic behavior capturing features in PyTorch. Following this, the
different benchmark studies are presented, whose discussions are then addressed
in Section 6. Finally, some ideas based on the results of the work are presented
for future consideration in Section 7

2PyTorch version 2.6.0 was officially released on January 29, 2025

10 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

2 Background

2.1 Transformers in Computer Vision

The transformer model was originally conceived for sequence-to-sequence tasks,
such as translating sentences from one language to another. To effectively process
sequences, understanding the relationships between sequence elements, called
tokens can be helpful. This understanding is achieved through a process known
as (self-)attention. Self-attention, sometimes called intra-attention is an attention
mechanism relating different positions of a single sequence in order to compute a
representation of the sequence (Vaswani et al., 2017).

Output
Probabilities
Add & Norm
Feed
Forward
| Add & Norm l‘_-:
(—LAdd S hom Mult-Head
Feed Attention
Forward T N
-
Nix Add & MNorm
~{_Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
At s A s)
] J —
Positional Posilional
roodt ® ¢ o
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 2: Original transformer architecture as proposed in (Vaswani et al., 2017).

The transformer, proposed in (Vaswani et al., 2017), follows an established
encoder-decoder structure. It core module present in both encoder and decoder can
is presented in Figure 2. The encoder maps input sequence tokens (x = x4, ..., ,,)
into abstract representations (= zq, ..., z,,), which are then used by the decoder
to produce an output sequence (y =y, ..., ¥,), typically generating one element
at a time. The decoder is auto-regressive or recurrent; together with the abstract
representations, the output is fed back to the decoder, to produce the next element
in it. The key element in the transformer is its novel attention mechanism, which
is used to produce both the intermediate representation z and the final output y.

What distinguished the transformer model and made it so performant was its
innovative approach to attention. Previous attention methodologies utilized con-

11 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

volution to relate tokens in a sequence, with computational complexity increasing
based on the distance between tokens, as seen in sequence processing models like
ConvS2S or ByteNet (Rush, 2018).

The transformer introduced Scaled Dot-Product Attention. For each input token
x;, three vectors are computed: query, key, and value (g;, k;,v; respectively). All
vectors are obtained from multiplying the input tokens by three different learned
weight matrices (W, Wy, Wy, respectively).

q=zW,
kaWK
'U:l'WV

The attention mechanism is computed as follows:

. q-kt
Attention(q, k, v) = softmax v

A

It calculates a weighted sum of the value vectors, where the weight assigned to each
is determined by the scaled and softmax-transformed dot product of the query
and key vectors. The resulting vector is called the attention vector. Each input
sequence token produces its own attention vector. In practice, attention vectors
for all input tokens are computed simultaneously by stacking all input tokens into
a matrix X and multiplying by the respective matrices.

LKt
Attention(Q, K, V) = softmax (Q) V

Jar

Some details are of noteworthy importance:

o For large values of d;, the dot products can grow excessively large in magnitude,
pushing the softmax function into regions with extremely small gradients. To

counteract this effect, the dot products are scaled by \/167 (Vaswani et al., 2017)
k

e Already in the original transformer paper further, the authors further improve
self-attention by applying it in parallel, introducing Multi-Headed Attention.
This approach learns h sets of matrices Wy, Wy, Wy, enabling “multiple
representation spaces” (Vaswani et al., 2017). The h attention output matrices

4y, ..., 4, are concatenated and linearly projected into a single attention matrix
Z: MultiHead(Q, K, V) = Concat(Zy, ..., Z;,) - Wy

e Unlike recurrent or convolutional neural networks, the transformer architecture
contains no inherent notion of token order. Without adding positional infor-
mation, the model would be invariant to token reordering, treating the sequence
as a set rather than an ordered list. The original transformer paper introduced

12 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

sinusoidal positional encodings, which use sine and cosine functions of different

) 2—*r
10000~ 4moda

pos
PEpos,2i+1 = COS B
100007 model

Later architectures have explored learned positional embeddings and other

frequencies:

variants, but the core idea remains the same: explicitly encode position infor-
mation into token representations to enable the self-attention mechanism to
consider sequence order.

2.1.1 Vision Transformers

Vision Transformers (ViTs) (Dosovitskiy et al., 2021) represent a paradigm shift
in computer vision, applying the transformer architecture—originally designed
for natural language processing—to image recognition tasks. Prior to 2021,
convolutional neural networks (CNNs) dominated computer vision. Although the
self-attention mechanism had been introduced in 2017 (Vaswani et al., 2017), the
ViT was the first to successfully leverage this approach at scale for vision tasks, by
avoiding applying complex engineering modification to the self attention mecha-
nism and instead leveraging on slicing the image into patches of a determined size
and applying attention onto their a latent space projection of them.

The core innovation of ViTs lies in their approach to images: rather than
processing them through convolution layers, they divide images into fixed-size
patches and treat these patches as tokens (analogous to words in NLP). This
allows the standard Transformer architecture to be applied to images with minimal
modifications.

Vision Transformer (ViT) Transformer Encoder

Transformer Encoder

1?
" - @15 @5 E

* Exira lea
Lmear Pro}ectmn of Flattened Patches

B
8z
08
e g
Er‘
=3
Ew
)
J—

SEE | T |
H@%M"%H.ﬁ{m i s
s

Figure 3: Diagram from the original ViT paper (Dosovitskiy et al., 2021)

13 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

Image Representation

RHXWXC

The input image, x € is divided into a sequence of N flattened 2D

patches,r € RP*P | resulting in a sequence of vectors with dimension RV*(P 2'0),
where N = I}D—VQV represents the effective sequence length. These patches are then
linearly projected to a latent space of dimension D using a learnable projection
matrix. At this point, the projected patches are referred to as “tokens,” following

transformer terminology.

Before processing through attention blocks, positional information must be
added to preserve spatial relationships that would otherwise be lost when treating
the image as a sequence. The authors used learnable 1D position embeddings,
noting that 2D-aware embeddings did not significantly improve performance.

Following established practice from BERT (Devlin et al., 2018), a special clas-
sification token ([CLS]) is prepended to the sequence. After processing through
the transformer, the state of this token serves as the image representation for
classification tasks, which is then processed by a simple MLP head.

Architecture

The ViT architecture closely follows the original transformer design. Each block
consists of Multi-headed Self-Attention (MSA) followed by a Multi-Layer Percep-
tron (MLP), with layer normalization (LN) applied before each block and residual
connections around each block, as shown in Figure 3.

Unlike the original transformer, ViT employs only the encoder portion since
image classification doesn’t require the sequential generation provided by the
decoder. The MLP contains two layers with a GELU non-linearity.

Less inductive bias than CNNs: A key difference between ViTs and CNNs
is their inductive bias. While CNNs have strong spatial inductive biases built
into every layer through local convolutions and pooling operations, ViTs have
substantially less image-specific inductive bias. In ViTs, only the initial patch
extraction and positional embeddings incorporate knowledge about 2D image
structure. The self-attention layers are global, allowing any patch to attend to any
other patch from the first layer onward, which enables the model to capture long-
range dependencies more easily than CNNs (Dosovitskiy et al., 2021).

Model Variations

The original ViT paper experimented with three model sizes:

14 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

Model Layers Hidden MLP Size| Attention Parame-

Size Heads ters

ViT-Base 12 768 3072 12 86M
(B)

ViT-Large 24 1024 4096 16 307TM
(L)

ViT-Huge 32 1280 5120 16 632M
(H)

Table 1: Model variations and their parameters from the original ViT paper
(Dosovitskiy et al., 2021)

Training and Results

The original ViT models were pre-trained on large datasets like ImageNet, Ima-
geNet-21k, or JE'T-300M before fine-tuning on specific tasks. Of particular interest
for this work is the performance of the ViT-B/16 configuration (Base model with
16 x 16 patch size) for the fine-tuned case of CIFAR100:

Model Accuracy [%]
ResNet 50x1 97.67
ResNet 152x2 92.05
ResNet 200x3 93.53
ViT-B/16 91.87
Table 2: Performance comparison on CIFAR100 selected results from (Dosovitskiy
et al., 2021)

These results demonstrated that the ViT approach could match or exceed state-
of-the-art CNN models when pre-trained on sufficient data, despite having less
image-specific inductive bias.

2.2 Early Exits in Deep Learning for Computer Vision

The early-exit approach proposes to provide additional computational flows to
that of a given model, with the intention of producing outputs faster than the main
model would have produced them (also called Backbone). Then, discriminating
with some heuristic, such early output is potentially taken as the model’s output.

The design and placement of this early exits of the network are guided by the
guiding principle that the time spent in the early exit computation should be lower
than the time it would have taken to process the complete backbone flow of the
model. Figure 4, taken from (Bakhtiarnia et al., 2021) is a conceptual diagram of
the idea.

15 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

Layer 1 [« Input

-

Layer 2

|

Early Exit Early
v Branch Result

| Layer b \

| y Final
[Layer L Result

Figure 4: Schematic representation of early exits in a neural network model
(Bakhtiarnia et al., 2021).

Early Exit
Branch

Early
Result

€< - €

The early exit approach presents some questions: What should be the architecture
of the branches? Where along the main computation flow should they be placed?
How should they be trained and what should be the heuristic for deciding on the
early predictions? All these are design question without a clear cut answer and
research has been done to explore possible solutions to this challenges. A short
overview of the guiding principles is presented hereunder. For a more detailed
explanation, refer to (Scardapane et al., 2020), and for a comprehensive survey of
the models proposed in the last five years, refer to (Montello et al., 2025).

2.2.1 Design and Placement of Early Exits branches

Processing partially processed data of a model with the intent of early inference is
obviously dependant on the dimensionality of this data. For example, early layers
in most CNNs have a very high dimensionality, which would result in extremely
high-dimensional classifiers. In the case of having a transformer as the main model,
the branch would have as domain the hidden states dimensionality.

As for the placement, procedures typically compare the computational gain of
exiting at a given location, i.e. the computation cost saved from not continuing
down the main computation flow. (Scardapane et al., 2020) present an approach
were a relation between the computation delta of the main computation flow

16 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

and that of a potential early exit are used to determine the early exit positions.
Alternatively, (Bakhtiarnia et al., 2021) argues for a fine-train exit coverage,
basically attaching exit to every step on their backbone, arguing that if earlier
exits are more accurate than later ones, the network will use the optimal amount
of resources at every inference. To illustrate a third approach to placement, (Li et
al., 2023) implement a low-cost exit prediction, to determine with high confidence
where will the model exit, and place a unified early exit at that location to carry
out the exit processing and decision.

2.2.2 Training of Early Exit Networks

Just as with the design and placement of the early exit branches, the training

strategies are as well a design challenge. however, some guiding principles have

been developed along the years. (Scardapane et al., 2020) mentions that three

broad training strategies:

o Joint training: The overall architecture can be trained jointly by defining a
single optimization problem that embraces all intermediate exits.

o Layer-wise: At each iteration a single auxiliary classifier is trained together
with the backbone layers preceding it.

e Classifier-wise: The backbone network is trained first, and then separately
train the auxiliary classifiers on top of it [72]. This can be interpreted as a very
primitive form of knowledge distillation.

Needless to say, there are many variations to this strategies, as researchers explore
the one that yields the best results for their design.

2.2.3 Inference in Early Exit Networks

The decision to take an intermediate - early - output is determined by the desire to

select the prediction with the highest confidence for the given input. This optimal

prediction would correspond to an optimal exit, early or not. This related to the

phenomenon referred to as over-thinking (Kaya & Dumitras, 2018), in which later

predictions on an input are of lower confidence than earlier ones ones, or even

wrongly classified. The process by which a early prediction is selected is called the

exit strategy or exit policy. The survey work done by (Rahmath P et al., 2024)

classifies them into rule-based and learnable. Common rule-based strategies are:

e« Max-Softmax: Softmax is applied to a vector of logits and the probability of
the most likely element is compared to a pre-determined threshold value. This
value can be different for each early exit or not (Scardapane et al., 2020).

o Entropy: Predictions are considered confident if the entropy value falls below a
predefined threshold, prompting the side branch to classify the input (Rahmath
P et al., 2024).

o Patience: Early predictions whose entropy is lower than a predefined threshold
are tracked, and exit occurs after the same prediction has been done across a
number of exits (Xu et al., 2023).

17 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

More robust exit strategies have been explored beyond rule-base heuristics.
(Rahmath P et al., 2024) mentions some models using Markov decision Processes
as policy generators, allowing to take environment factor into consideration, by
training a Deep Query Network (DQN) as the policy. Other models learn the policy
together with the model’s parameters (Bolukbasi et al., 2017). Finally, although
not directly relevant to this work, an interesting alternative to the exit strategy
design involves distinguishing different kinds of uncertainty, referred as aleatoric
and model uncertainties in (Xia, 2024), and using a Dirichlet framework to directly
measure model uncertainty.

“[Aleatoric uncertainty| usually refers to the irreducible uncertainty which arises
from the natural complexity of data, such as class overlap and label noise. [model
uncertainty] on the other hand, is the uncertainty caused by a lack of training
data or insufficient model complexity.” (Xia, 2024)

18 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

3 Tools of the Trade
3.1 ONNX

ONNX is an open format designed to represent machine learning models by pro-
viding a common set of data types and operations for extensible graph definitions
that represent computational graphs.

The need for ONNX in this work stems from the desire to asses how straight-
forwards or easy is it to deploy early exit models. The deployment of a machine-
learned model into production usually requires replicating the entire ecosystem
used to train the model, most of the time with a docker. Once a model is converted
into ONNX, the production environment only needs a runtime to execute the
graph defined with ONNX operators. This runtime can be developed in any
language suitable for the production application (ONNX Community, 2025)

Deep learning with neural networks is accomplished through computation over
dataflow graphs. Some frameworks (such as CNTK, Caffe2, Theano, and Tensor-
Flow) make use of static graphs, while others (such as PyTorch and Chainer) use
dynamic graphs. The graph serves as an Intermediate Representation (IR) that
captures the specific intent of the developer’s source code, and is conducive for
optimization and translation to run on specific devices (CPU, GPU, FPGA, etc.).
By providing a common representation of the computation graph, ONNX helps
developers choose the right framework for their task (ONNX Project Contributors,
2023).

The ONNX framework consists of three main components: (1) a definition of an
extensible computation graph model, (2) definitions of standard data types, and
(3) definitions of built-in operators (the “operator set”). The first two elements
constitute the ONNX intermediate representation specification, while the third
provides the available operations and functions used with the IR specification to
compose an intermediate representation of a model. A key feature of the ONNX
operator set is its extensibility, allowing implementations to add operators with
semantics beyond the standard set that all implementations must support.

In ONNX, the top-level construct is a Model, which contains all necessary
metadata to run the model, including the opset version and the graph itself. The
computation dataflow graph is structured as a topologically sorted list of nodes
forming a cycle-free graph, with each node representing an operator call. Every
node has zero or more inputs and one or more outputs.

Input Tensor l—bl FC Layer 1 (Linear) |—>| RelLU Activation |—>| FC Layer 2

Figure 5: Two layer MLP forward pass

A basic MLP design is presented in Figure 5, and Figure 6 (left) visualizes an
ONNX graph representing the model’s computations. Notably, matrix multipli-

19 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

cation and bias addition are combined into a single General Matrix Multiplication
operation. Figure 6 (right) is a more explicit representation, illustrating how
different ONNX implementations or framework backends can produce different
IRs for semantically equivalent models.

| input l

input

node_Transpose_0

: [y con..._1/vaevul |

JFully_connected_1/MatMul_output_0

[Fully_con...cted_1/Add

fFfully_connected_1/Add_output_0

g D

/Relu_output_0

JFully_connected_2/MatMul_output_0

fFully_con...cted_2/Add
output

@ prediction
prediction |

Figure 6: Visualizations of the Two layer MLP computational graph. Left: Stan-

node_Gemm_1

transA =0
transB =0

node_Relu_2

node_Transpose_3

node_Gemm_4

transA =10
transB=0

dard representation. Right: Explicit intermediate representation.

3.2 PyTorch

PyTorch is an optimized tensor library for deep learning using GPUs and CPUs.
It was created by the Meta Al research lab in 2016 and has enjoyed widespread
adoption®. PyTorch is written in C++ and Python. It’s ease of use lies on several
aspects. Firstly, PyTorch’s basic data structures, the Tensor and Module, make
it easy for anyone with some coding and linear algebra experience to implement
neural network architectures that enjoy some very complex features.

A key feature of PyTorch is that by default, it uses eager execution: the
computational graph is is defined at runtime. This allows for on-the-spot graph
manipulations as well as use of standard debugging tools, which contribute to a
smoother development experience (Mario, 2021).

3.2.1 PyTorch meets ONNX

While it’s main focus is neural networks modelling, PyTorch has a plethora of
utilities and tools for different purposes. One of those modules which played a

3The success of PyTorch can be partly attributed to its collection of modules, but not
exclusively. Other reasons are Meta's backup, strong academic adoption and being open source.
This last one practically made this project possible

20 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

critical part in the development in this work is torch.onnx. PyTorch’s ONNX
module captures the computation graph from a native PyTorch Module model and
converts it into an ONNX graph, which then can be consumed by any of the many
runtimes that support ONNX.

It is important to note that there are two flavors of ONNX API in torch.onnx,
which vary on the compilation backend used: The established TorchScript and
the newer TorchDynamo. Both are compilation engines part of the torch.compile
toolset.

These differ in how the computational graph is created. While TorchScript
uses traditional tracing tools to capture the computation instructions and compile
them, Dynamo uses Python’s frame evaluation API (Foundation, 2016) to capture
the computation instructions. This difference allows for Dynamo to capture
flow-control behavior; computations whose execution is data dependant (like for
example parts of the graph to be executed only under certain conditions), such
features were not entirely possible for the TorchScript engine.

Flow Control
Dynamo produces a graph break when it sees data-dependent control flow (Team,
2025a). Concretely, it is unable to trace the following into a full graph:

1 @torch.compile(backend="eager", fullgraph=True)
2 def f(x):

3 if x > 0:

4 return x.sin()

5 else:

6 return x.cos()

7

8 x = torch.tensor(1l.)

9 f(x)

This is because Dynamo traces a function by running through it with FakeTensors
(tensors without storage), and so it is unable to determine if x (as a FakeTensor)
is greater than 0 and it ends up falling back to eager-mode PyTorch (PyTorch
Team, 2023).

PyTorch offers torch.cond, a custom version of the if/else statement as part of
their ‘High Order Operators’ which allows for the true and false execution graphs
to be traced. Semantically, torch.cond performs the following;:

1 def cond(pred, true_fn, false_fn, args):

2 if pred:

4These modules work deep inside the torch ecosystem and can be quite complex to grasp, for
which reason I refer interested readers to the torch documentation on the matter

21 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

3 return true fn(*args)
4 else:
5 return false fn(*args)

When Dynamo sees a torch.cond, it will:

e Trace both the true_fn and false_ fn and turn them into subgraphs

e emit a call to torch.ops.higher order.cond(pred, true fn graph,
false fn graph, args) into the graph.

Only recently® the operator set of ONNX used by PyTorch was extended to include
torch.cond. Nothing better than a practical example to cement understanding.
The following is a simple conditional model, implemented in PyTorch, for which
an ONNX model is presented in Figure 7.

class CondModel(torch.nn.Module): * Python

1

2 def init (self): super(). init ()

3

4 def forward(self, x):

5 def true fn(x, z): x = x + 1.0; return x

6 def false fn(x, z): x = x - 1.0; return x

7

8 x = torch.cond(pred=x.sum() > 0, true fn=true fn,
false fn=false fn, operands=(x,))

9 return x

node_If_3

else_branch:

node_Greater_2 false_graph_0 o

sum_1 gt | then_branch:

node_ReduceSum_0

keepdims =0
noop_with_empty_axes =0

input output

true_graph_0

Figure 7: ONNX model for a simple conditional neural network

5With the release of torch 2.6.0

22 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

4 Related Work
4.1 Early Models

The concept of early exits has been explored for several years, surfacing probably
in 2015. Since then, research interest in conditional computation and dynamic
inference has grown steadily (Montello et al., 2025).

Within the field of neural networks for computer vision, early exits came to
surface in 2015 with proposal of conditional deep learning (Panda et al., 2015).
They attached iteratively linear classifiers between convolutional starting with the
first layer, and monitoring the output to decide whether a sample can be exited
early. the following year, the BranchyNet model came out (Teerapittayanon et al.,
2016). They extend the work of (Panda et al., 2015), by attaching entire branch
networks of more than a single layer at determined locations in the model.

BranchyNet expanded this concept by implementing more complex branch
networks at strategic locations. Their work addressed several practical aspects:
e placement of branch points
e structure of branches
e exit point classifier design
e exit criteria and computational costs
 training methods for all classifiers

BranchyNet addressed the correlation between prediction accuracy and model
size by adding side branches to the main network backbone. For training, they
computed cross-entropy loss at each exit and combined them into a global loss
function®. As for early exit criteria, the prediction entropy was used as exit
strategy.

Their results showed minimal accuracy impact (less than 1% decrease) with
substantial latency reductions across LeNet, AlexNet, and ResNet architectures
on MNIST and CIFAR10. CPU inference times decreased significantly: LeNet
from 3.37ms to 0.67ms, AlexNet from 9.56ms to 6.32ms, and ResNet from 137ms
to 73ms.

4.2 Vision Transformers with Early Exit

Given the success the transformer architecture had on computer vision tasks, it
was a matter of time until the early exit paradigm would be incorporated in them.
Indeed, in 2021 (Bakhtiarnia et al., 2021) did just that. They applied early exit
mechanisms to Vision Transformers and explored seven different exit designs based
on the ViT-B/16 model:

o« MLP-EE: A simple branch model consisting in an mlp processing the (early)
classification token

6This corresponds to the end-to-end strategy mentioned in Section 2.2

23 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

e CNN-X: Three branch models with CNN architecture, motivated by contem-
porary research which focused greatly on this kind of architecture and the low
parameter and computation overhead of the CNN algorithm

e ViT-EE, MLP-Mix-EE, ResMLP-EE: Three branch models with the intention
of finding an alternative to the locality of the receptive field of CNNs models.
They use both a short transformer encoder as exit branch (ViT-EE) as well
as other algorithms of lower computational complexity, inspired by research on
optimizing the transformer itself by replacing the attention with them.

They experimented on image classification with the CIFAR10, CIFAR100, and
Fashion MNIST datasets for all seven proposed architectures. In their experiments
they observed poor performance of the MLP-EE branch, as it does not contain
enough parameters and layers to extract useful features. Regarding the CNN-based
branches, they outperformed other types in the first locations, and the authors
argue that it is likely because the fusion of convolutional layers that capture local
interactions well, with the global attention of the backbone. Finally, they show
the ResMLP-EE outperforming the ViT-EE for image classification.

4.3 The ‘LGViT’ model

4.3.1 Summary

The work conducted by (Xu et al., 2023) explores a novel modification to the
traditional Vision Transformer (ViT) by implementing what they call “heteroge-
neous exiting heads” with the primary goal of improving inference latency while
maintaining acceptable accuracy. As highlighted in their paper, they discovered
that direct application of early exiting methods to Vision Transformers without
careful consideration leads to substantial performance degradation. Through sys-
tematic investigation, the researchers identified two critical constraints affecting
early exiting performance in ViTs: first, inadequate feature representations in
shallow internal classifiers, and second, limited ability to capture target seman-
tic information in deep internal classifiers. These observations emerged from a
comprehensive probe study that evaluated the effectiveness of different early exit
methods, including vanilla MLP-based approaches, convolution-based exits, and
attention-based exits.

24 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

[

]
Split

LIP3

[CLS] token l

Local Perception Head (LPH)

GELU | BN

DWConv

[CLS]
token

Prediction
[Patch Embedding] confidence

F——— L -r'@—'c;n?.al%

[Encoder 2 l

1
1
1
1
1
1
I
1
1
I
1
1
I
1
I
I
1
|
Q
LPH (O)— I Z
T Dog 64% :-
1
I
1
I
1
1
I
1
1
I
1
I
I
1
I
1
1

[Encoder 1]

3

} Global Aggregation Head (GAH)

| Enw[—‘der = GAH (O [Position-Wise]
[Encodert+1] Dog 8% S — [CLS]

l—b GAH E :©_ N [MHSA] token

l [Pool]
[Encoder L }—/ A

A\ "
Cf? ¥
@ Point-wise addition — Forward propagation —* Heterogeneous distillation
Homogeneous distillation Prediction distillation @ Classifier

Figure 8: Overview of the proposed early-exiting ViT framework by (Xu et al.,
2023)

To address these limitations, LGViT conducted a systematic study to determine
the optimal location and type of intermediate heads within the ViT structure. The
researchers implemented two distinct types of intermediate heads: For the first half
of exiting points, Local Perception Heads (LPHs) —based on convolution— designed
to enhance local information exploration, and Global Aggregation Heads (GAHs)
—based on self-attention— for the second half, to augment global information
acquisition. Both types can be seen in Figure 8.

The placement of each intermediate head followed an approximately equidis-
tant computational distribution strategy, where exiting points were positioned
to maintain consistent multiply-accumulate operations (MACs) between adjacent
exits. This approach ensured balanced computational load while optimizing the
effectiveness of different head types at their respective network depths. The final
configuration for their published pre-trained weights positioned exits at layers 4
through 11, a distribution that emerged from both their ablation study on optimal
head placement and adherence to the computational equidistance principle.

Intermediate Head types
Local Perception Head

The Local Perception Head focuses on capturing local information through con-
volutional operations. This design choice stems out of previous research on the

25 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

efficacy of convolutional methods integrated with attention, demonstrating their
effectiveness in early layers. To further support this choice, the authors compare
the feature extraction capacity of convolutional and MLP based early exits and
compared them to that of ResNet by means of Central Kernel Alignment. The
study shows higher similarity for the convolutional variance. The LPH computa-
tion is the following:

LPH(X,,,m) = Pool(Convy,;(G(X.,,m))) + Xcrs

en’ en?

G(X,,, m) = PDConv(Convy . (X,,), m)

en’

The LPH first employs a 1 x 1 convolution layer to expand dimensions. Subse-
quently, the expanded features are passed to a position-wise depth-wise convolu-
tion (PDConv) with k x k kernel size that depends on the exiting positions m,
with smaller kernels for deeper layers. Then the features are projected back into
the original patch space using a 1 x 1 convolution and then passed to an average
pooling layer. The [CLS] token is then added to the pooled out-put to facilitate
the fusion of global information from the original backbone and local information
from the convolution. The output of LPH is then passed to the internal classifier.

Global Aggregation Head
The Global Aggregation Head, connected to deeper exiting points, is designed to

“..integrates features from locally

extract global information. As per the authors:
adjacent tokens and then compute self-attention for each subset to facilitate target

semantic information exploitation”.

The authors first employ what they call a position-wise feature convergence
(PFC) block to aggregate features from the exiting point. Analogous to PDConv,
the window size s of PFC also depends on the exiting position m In the PFC
block, down samples the embedded patches by average pooling them. Then the
integrated features are passed through multi-head self-attention and a pool layer.

€ converged - PFC(XQH’ m) = POOlm (Xen)

GAH(X,,,m) = Pool(MHSA (X,) + Xeug

en?’

Training

Quite different from the pre-train, fine tuning training schema done in the original
ViT work (Dosovitskiy et al., 2021), (Xu et al., 2023) implements a custom training
strategy with the intention of tackling performance degradation that stems from
common approaches, after comparing different training schemes (Dosovitskiy et
al., 2021). It involves two stages. First, an end-to-end approach helps the backbone
ViT achieve high accuracy. In the second stage, the parameters of the backbone
are frozen, and only the exiting heads are updated through self-distillation tech-
niques. This careful training procedure helps minimize information loss between

26 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

the heterogeneous exit architectures and facilitates the transfer of knowledge from
deeper to shallower exits (Xu et al., 2023)

Results
The researchers evaluated LGViT across multiple Vision Transformer architec-
tures, including ViT, DeiT, and SWIN models. However, our focus here is
primarily on their results with the ViT model for the CIFAR100 dataset. Their
experimental results show a 1.87x speedup with only a minimal accuracy drop
of around 2% compared to the original models (88.5% for LGViT and 90.8% for
ViT-B/16).

Method Parameters CIFAR100 Food-101 ImageNet-1K
count

ViT-B/16 86 M 90.8% | 1.00 X | 89.6% | 1.00 X | 81.38% | 1.00 X

LGViT 101 M 88.5% | 1.87 X | 88.6% | 2.36 X | 80.3% | 2.7 X

Table 3: Results of the LGViT model compared to the original ViT-B/16 on
different datasets. The accuracy is reported as a percentage, and the speedup
factor is shown in parenthesis.

4.3.2 LGViT implementation

Structure

The LGViT implementation maintains a structure similar to the original Vision
Transformer (ViT) model architecture known as ‘ViT-B.16’ (Dosovitskiy et al.,
2021), retaining the same embedding, transformer block, and final MLP head
components. Figure 9 shows the class diagram of the hierarchical organization of
the model components. The implementation unifies both ViT and DeiT models
under a single codebase, with naming conventions primarily reflecting the DeiT
terminology. This unified approach facilitated experimentation with different
backbone architectures for the authors.

27 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

DeiTHighwayForlmageClassification

deit: DeiTModel
classifier: torch.Linear

forward()

|

contains

DeiTModel

embeddings: DeiTEmbeddings
encoder: DeiTEncoder
layernorm: LayerNorm

pooler: DeiTPooler

forward()
contains contains contains contains
DeiTEmbeddings DeiTEncoder

patt?r_l_embeddlngs: DeiTPatchEmbeddings layer: tor_ch.ModuIeLlst[DelTLayer] DeiTPooler LayerNorm
position_embeddings early_exit_threshold
cls_token position_exits f d f d
dropout highway: torch.ModuleList S, SRIEVEY
forward() forward()

contains torch.ModuleList of

DeiTLayer

attention: DeiTAttention
intermediate: DeiTIntermediate
output: DeiTOutput
layernorm_before: torch.LayerNorm
layernorm_after: torch.LayerNorm

forward()

Figure 9: Class diagram for the LGViT model

The forward pass through the model follows a specific flow pattern, as depicted
in Figure 10 and Figure 11. The first figure shows the high-level flow through
the entire model, while the second illustrates the encoder’s operation with early
exit mechanisms. The implementation utilizes try/catch statements as the exit
mechanism. When exit conditions were met, the determined DeiTLayer throws a
HighwayException, which is then caught by the DeiTEncoder. This approach, while
functional, created challenges for deployment since try/catch statements prevent
the computation graph from being properly traced by PyTorch’s ONNX export
functionality.

Normal Execution Path

DeiTEmbeddings p
/P’E‘—P DeiTEncoder H Apply LayerNorm —4 Optional Pooler H Regular Output

Input: pixel_values Try Block
G Dol mees|

HighwayException
thrown

Final Output

Exception Handler

Catch Extract early n
HighwayException H exit outputs —— Extract exit layer —— Early exit output

Figure 10: Overview of the forward pass of the DeiTModel from (Xu et al., 2023)

28 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

Figure 11: Overview of the forward pass of the encoder component from (Xu et
al., 2023)

Implementation problems

Working with the original LGViT codebase posed sever challenges. The code
structure was based of the template of the models implemented in the =
Transformers” (Wolf et al., 2020) model database, requiring both inheritance and
composition from specific base classes.

Although useful for models in the @ Transformers infrastructure, it led to
significant code duplication throughout the repository, making it more difficult
to analyze and understand the implementation. Additionally, the execution flow
was primarily managed through bash scripts that passed configurations to high-
level Python scripts, which obscured parameter settings and made replication
challenging.

Certain design decisions further complicated understanding the codebase. For
example, the retrieval of corresponding early exit heads by layer index and the
frequent overwriting of output variables made the code flow difficult to follow.

A particularly complex example appears in the encoder’s forward method
(Listing 1), where the handling of early exits involves multiple nested conditions
and state tracking. This particularly implementation detail, quite embedded in
the code of LGViT, made the export to ONNX impossible, since the computation
graph is broken when try/catch statements are in place.

"Yes, the official name includes the emoji®
8] find this annoying when reading, but that’s their brand identity

29 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

10
11
12
13
14
15

16

17

18

19

20
21
22
23
24
25

26

27

28

29

30
31

Simplified exit strategy decision-making logic in the B
original implementation b Python
for i, layer _module in enumerate(self.layer):

. process current layer ...

if 1 in self.position exits:
highway exit = self.highway[self.position exits[i]]
(current _outputs)

Inference stage exit decision logic
if not self.training:

highway logits = highway exit[0]

Entropy-based exit strategy

if self.exit strategy == 'entropy':
highway entropy = entropy(highway logits)
highway exit = highway exit + (highway_ entropy,)
all highway exits = all highway exits +
(highway exit,)

if highway entropy <

self.early _exit threshold[self.position exits[il]]:
new output = (highway logits,) +
current outputs[1l:] + ({"highway":
all highway exits},)

raise HighwayException(new output, i + 1)

Confidence-based exit strategy

elif self.exit strategy == 'confidence':
highway confidence = confidence(highway logits)
highway exit = highway exit + (highway confidence,)

all highway exits = all highway exits +
(highway exit,)

if highway confidence >
self.early exit threshold[self.position exits[i]]:
new output = (highway logits,) +
current outputs[1l:] + ({"highway":
all highway exits},)
raise HighwayException(new output, i + 1)

Listing 1: “Code Snippet from the original LGViT implementation”

30 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

4.3.3 CIFAR-100 Dataset

The LGViT model was evaluated on three datasets in the original paper, with
CIFAR-100 among them. The CIFAR-100 (Krizhevsky, 2009) dataset consists
of 60,000 color images of size 32x32 pixels, divided into 50,000 training images
and 10,000 testing images, with samples uniformly distributed across 100 distinct
classes. Each class contains exactly 500 training images and 100 test images,
providing a balanced dataset for classification tasks.

For their experiments, the LGViT authors applied standard data augmentation
techniques to improve model generalization. The training data underwent random
crops, random horizontal flips, and normalization, while the testing data was
processed with center crops and normalization only. Both training and test samples
were resized to 224 x224 pixels

The CIFAR-100 dataset presents varying levels of visual complexity across its
classes. Some classes exhibit highly consistent and distinctive visual features,
as demonstrated by the keyboard samples in Figure 12. These classes typically
present well-defined visual patterns that remain consistent across samples.

Class 39: keyboard (test split)

Label: keyboard Label‘ keyboard Label keyboard Label keyboard Label: keyboard
ID: 17 ID: 79

B,

Label: keyboard Label: keyboard Label keyboard Label keyboard Label keyboard

ID: 35

e

Figure 12: CIFAR-100 sampled from the ‘keyboard’ class.

Other classes share significant visual similarities. The examples in Figure 13 illus-
trate this challenge, where oak trees and willow trees share substantial structural
similarities. Note how tree structures dominate most of the image area, making
it difficult to distinguish between tree classes even for human observers without
specialized knowledge.

31 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

Class 52: oak_tree (test split)

Label: oak_tree Label: oak_tree Label: oak_tree Label: oak_tree Label: oak_tree
: : : ID: 42

Class 96: willow_tree (test split)

Label: willow_tree Label: willow_tree Label: willow_tree Label: willow_tree Label: willow_tree
ID: 50 ID: 11 ID: 56 ID: 44 ID: 3
- .

Y Bl

Figure 13: Sample CIFAR-100 images from different classes but similar visual

features

Additionally, some classes display considerable intra-class variability. As can be
appreciated in the class samples shown in Figure 14. These images vary signifi-
cantly in pose, texture, background, and other attributes while belonging to the
same semantic category.

Class 98: woman (test split)
Label: woman Label: woman Label: woman Label: woman Label: woman
ID: 9 ID: 5 : : :

8 D: 38 ID: 43 ID: 14
ke - H n

Class 46: man (test split)

Label: man Label: man Label: man Label: man Label: man
ID: 21 ID: 77 ID: 87 ID: 10 ID: 43

5 M 1 i

Figure 14: CIFAR-100 samples from the ‘woman’ and ‘man’ classes. Visual features

both in the object of interest as well as the background are varied

32 / 69

Study of Early Exit Neural Networks for Computer Vision

5 Results
5.1 Terminology

DTU

The re-implementation of the LGVIiT done in this work is regarded hereinafter

as EEViT’. When discussing its architecture, the following terminology is used:

o The names of the original ViT internal elements remain unchanged (patch

embeddings, encoder, classifier).
e The encoder of the ViT is referred to as the “Backbone”.
o Early exits are called “Highways” from the idea of taking a faster route to the

destination.

o Within a highway, what the LGViT work calls “Intermediate Heads” (LPH
or GAH) are referred here as the neck of the highway, which lead up to the

highway’s head.

e The classifier at the end of the highway is called the highway’s head, following

the common convention of naming the task-specific module (image classification
in this case) as the “head” of the model.

| Patch embeddings |
()
Attention 1
i Highway \I
i Ly Highway Neck — Highway Head
.
Aftention 2
"L' ."-I Highway |
lv ——>» Optional forward propagation
Attention L
—» default forward propagation
final head

Figure 15: EEVIT’s naming conventions

9The term EEVIT has different meanings in other publications, but here is the name given to
the re-implementation of the LGViT codebase

33 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

5.2 Implementation results

5.2.1 Architecture

EEVIT follows the standard Vision Transformer (ViT) architecture. It takes as
reference the implementation from the ViT-PyTorch repository (Wang, 2025) with
modifications to support early exiting using one of the exit strategies detailed by
the LGVIiT authors (Xu et al., 2023). Specifically, the confidence or maz-softmax
strategy. The reason for this is that the original authors published pre-trained
weights trained on with strategy. The model’s main components are presented
hereunder, and the model’s UML diagram is presented in the Annex section.

1. Patch Embedding: Converts the input image into a sequence of embeddings.
e Projects image patches into the embedding space using a convolutional layer
e Adds a learnable class token and positional embeddings

2. Transformer Encoder: Processes the embedded patches through multiple
self-attention layers.
o Contains multiple Attention layers, each with the potential for an early exit
e Implements a “fast pass” mechanism to skip remaining layers once an exit
condition is met

3. Attention Blocks: Standard self-attention mechanisms with potentially addi-
tional highway components.

4. Highway Networks: Early exit pathways attached to specific transformer
layers.
« Different types of highway necks (e.g., LPH, GAH)
¢ C(lassifier to make predictions from intermediate features
o Exit evaluator to determine if the confidence threshold is met

5. Final Classifier: The standard exit point for samples that don’t meet early
exit criteria.

It uses a hierarchical configuration system with 2 levels, Model and early-exit level.
This allows flexibility in specifying different model variants while maintaining type
safety. The configuration file allows specifying which highway type to use at each
exit point:

34 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

early_exit_config:

1

2 exits:

3 - [3, 'convl 1']

4 - [4, 'convl 1']

5 - [5, 'conv2 1']

6 - [6, 'conv2 1']

7 - [7, 'attention', {sr ratio: 2}]
8 - [8, 'attention', {sr ratio: 2}]
9 - [9, 'attention', {sr ratio: 3}]

10 - [10, 'attention', {sr ratio: 3}]
Listing 2: excerpt from configuration file where the early exits are specified

Some design decisions were taken to simplify the implementation without altering
the behavior of the model:

As mentioned in Section 4.3, LGViT specifies intermediate heads at modelling
time!?. Instead, in the new implementation, the network reads from a configuration
file the location and type of early exit to be added to the network and appends it
to the encoder layers. This allows for more flexibility in creation and placement of
highways. The construction of the layers can be seen in version 1 of the Figure 16.

Initially, a conditional statement would be the mechanism to determine how
to populate the fast-pass token as seen in version 1 of Figure 16, and although
the export library supports tracing nested conditionals, it was decided to instead
assign to the fast-pass token value, the output of the decision method. This can be
done since they both the evaluation method’s output and the fast-pass token have
the same dimensionality, since it is an evaluation on each element of the attention
score’s output, the revision is presented in version 2 of Figure 16

The stacking of the attention and highway layer was further revised, since it
made difficult the identification of the exit layer’s index, since the list was shared by
attention blocks and highways. Thus, the designed changed, making the highways
an attribute of the attention block. Every attention block in the encoder will
either get a exit head as specified or a generic IdentityHighway. The final design
is version 3 of Figure 16.

At the end of the highway’s forward pass, a classifier will evaluate the processed
information and make a prediction, scored by a confidence level.

0The term modelling time refers to the time window in the execution of the program where
the neural network is constructed. This is to make a distinction of the moment the model is used
for inference form the moment it is constructed. Both happen within the traditionally used term
runtime

35 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

Version 1 - nested conditional

attn forward | | IC forward

)-E-E

3}

[[attn_out = input| |
[compute attn | |

B

5
L

(B

return attn_out

attn forward

| [attn_out = input [|

lattn_out = input] |
[[compute atin | |

‘ ‘Compute earlyexitl ‘

| highway_token = indicator_met() |

v

return attn_out

return attn_out

Version 3: HW inside of AttnBlock

attn forward \ IC forward

[attn_out = input | |

| [attn_out = input] |

| |Compute early exit| |
| compute attn | |

| highway_token = indicator_met() |

A 4

Figure 16: Encoder forward pass iterations
36 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

5.2.2 Early Exit Mechanism - Fast Pass Token

EEVIT implements a distinct mechanism to skip unnecessary computation. The
exit mechanism design consists of adding a token to the patch sequence, termed
the ‘fast-pass’ token. This token will act as signaling for the network to by-pass
any further computations by reading it’s values as truthy or falsy and acting
accordingly. A diagram of the idea is presented in Figure 4.

Embeddings + fast-pass token

l Exit Criteria
met

Attention Block + ‘

Highway
Embeddings + fast-pass token

|

Figure 17: Forward pass schematics of the encoder of the EEVIT model

With this mechanism the prediction from the early exit is preserved and passed
through a fast-pass channel in the network up until the end. Figure 18 shows the
internal mechanics of the attention block.

Yes —
(Input: hidden states + FP } » fast_pass == 1?
no—>| Run attention module attn_out -

Figure 18: Internal logic of EEVIT’s attention blocks

5.2.3 Highway Types

One very helpful feature of the new implementation, is the Highway factory. This
is a feature that uses the factory method design pattern to create different types
of Highway modules — The early exits — in the EEVIT architecture. The key
components are:

37 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

e The Highway class: The main wrapper class that combines a highway’s neck
and head and exit evaluator — of classes HighwayNeck, HighwayClassifier and
ExitEvaluator respectively —

e The HighwayNeckFactory class: A factory class that creates HighwayNeck network
modules based on the specified type

e The HighwayNeck class: Different implementation classes for early exits, which
are mapped to the highway type ni the following way:

» LPH(s): Convl x with x corresponding to kernel size s
» GAH(s): attention(s) with s corresponding the pooling window size s

This design offers several advantages. It provides modularity by using the factory
pattern to separate the creation of highway networks from their usage, making it
easy to add new types without altering the rest of the code. The configuration-
driven approach allows highway networks to be created based on configuration
values, enabling dynamic architecture selection without requiring code changes.
Consistency is ensured as all highway heads follow the same interface, making
them interchangeable and ensuring proper integration with the rest of the model.
Additionally, reusability is achieved by sharing common components like the
HighwayClassifier across different highway implementations. Finally, the declar-
ative configuration enables early exits to be defined in the YAML configuration,
simplifying experimentation with different early exit setups.

Implementing new Highways is now made significantly easier. The neck can be

modelled as a normal PyTorch Module, with the following two requirements:

e It constructor function signature must have as arguments: ee config:
EarlyExitsConfig, kwargs: dict

e Its forward function signature must have as arguments x: torch.Tensor, H:
int, W: int)

Then, when the new early exit model is ready to be included in the model, it can
be added to the configuration:

1 // yaml

2 early exit config:

3 exits:

4 - [5, 'my new head', {paraml: valuel, param2: value2?}]
5

5.2.4 Parameter Count and Distribution

Total parameter count is presented in Table 4. The parameter count of the imple-
mented models encoder by layer is presented in Figure 19. As can be appreciated,
the increase in parameters from layer without early exits to one with is about 30%
or 2M parameters. As for the difference between Highway types, the parameter
count doubles from LPH to GAH, as seen in Figure 20.

38 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

EEVIT Parameter Distribution by Layer
Layers 0-5
= Attention
- MLP
Highway
4,000,000
2
Q
2
£
§ 3000000
& total params: 7,087,872 total params: 7,087,872 total params: 7,087,872 total params: 8,358,244 total params: 8,358,244 total params: 8,349,028
s
& 2.000,000
e
€
5
z
1,000,000
ol
2
Layers 6-11
" Attention
- MLP
Highway
4,000,000
o
2
£
s 3,000,000
Q total params: 8,349,028 total params: 9,524,836 total params: 9,524,836 total params: 9,524,836 total params: 9,524,836 total params: 7,087,872
k3
@ 2,000,000
2
€
E
=
1,000,000
ol
6 7 8 9 10 11
Layer Index

Figure 19: parameter count for the EEVIT encoder by layer

Component Parameter Count | Percentage
Patch embeddings 742,656 0.74 %
Encoder 85,056,000 84.48 %
Early Exits 14,810,912 14.71 %
Final Classifier 76,900 0.08 %

Table 4: Parameter count and distribution for LGViT model, taken from own re-
implementation

39 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

Parameter Distribution by Layer and Head Type
Total: 9,524,836

10,000,000

Total: 8,358,244 T
2,436,964
8,000,000 Highway (25.6%)
1,270,372
(15.2%)

6,000,000 -

MLP MLP
4,723,968 4,723,968
(56.5%) (49.6%)

4,000,000 -

Number of Parameters

2,000,000 -

Attention
2,363,904
(24.8%)

Attention
2,363,904
(28.3%)

Layer 3 Layer 7
(Local Perception) (Global Aggregation)

Bmm Attention W MLP Highway

Figure 20: parameter count for encoder layer with Local Perception and global
Aggregation necks

5.2.5 ONNX Export

The design presented in the last section was done taking into consideration that the
model itself, although built using the PyTorch framework, needed to be exportable
to ONNX. As can be seen in Figure 18, some form of flow-control is needed to guide
the execution of the relevant nodes of the computation graph that is the model.

This flow-control need is the key reason behind the need for re-write. As
mentioned in Section 3.2.1, it is not enough to replace the try/catch statements
with an if/else statement for the exit decision, since the base python version brakes
the computational graph of the model and is therefore untraceable.

Both the original implementation as well as this work’s implementation are
developed with PyTorch, and therefore the tool to create the ONNX model is
torch.onnx.export. Thus, the star of the show in the new EEVIT implementation
is torch.cond. It is important to highlight its use since without it it would have
been impossible to test the model in the intended environment.

To illustrate how the feature was used, a simplified version of the encoder’s
forward pass logic, were the fast-pass mechanism is used is presented hereunder:

40 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

O© 00 N O U1 b W N B

[=
W N R O

14
15
16
17
18
19

“"*"TransformerEncoder.forward method""" . Python

def forward(self, x: torch.Tensor):
code here skipped
for layer in self.layers:
fast pass layer = get fast pass(x with fastpass)

torch.cond usage
x _with fastpass, predictions placeholder tensor = torch.cond(
fast pass layer.any(),
self.fast pass,
layer,
(x_ with fastpass, predictions placeholder_tensor),
)
i+=1
fp = get fast pass(x with fastpass)
x_norm = self.norm post layers(remove fast pass(x with fastpass))
X _with fastpass = set fast pass token(add fast pass(x_norm), fp)

return x with fastpass, predictions placeholder tensor

Listing 3: Forward pass method of the EEVIT encoder

Although officially the support for torch.cond in torch.onnx.export was only

release late january 25, the feature luckily available beforehand in pre-released

versions available already in Dec 24’, and the version used was 2.6.0.dev20241226.

A final details equally important, is the fact that some data copying needed to

be introduced, namely in two places. The code extract shown in Listing 3 shows

in line 10 the conditional call to self.fast pass. The code of this function in

presented hereunder:

1
2
3
4
5

6

def fast pass(

self,
x_with fastpass: torch.Tensor,
predictions placeholder tensor: torch.Tensor,

return x with fastpass.clone(),
predictions placeholder tensor.clone()

Listing 4: fast pass method of the EEVIT encoder

Similarly, the highway module, in charge of setting the value of the fast-pass token

carries the following logic in its forward pass method:

41 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

1 """TransformerEncoder.<layer x>.highway.forward method""" % Python

def forward(self, x with fastpass: torch.Tensor,
predictions placeholder tensor: torch.Tensor):

highway logic skipped for clarity

x _with fastpass,

3

4

5

6 x with fastpass = set fast pass token(

7

8 value=self.exit evaluator.decision tensor(logits).to(
9

dtype=x with fastpass.dtype

10),

11)

12

13 return x with fastpass, predictions with idx
14

15 # fast pass utils.py

def set fast pass token(x with fastpass: torch.Tensor, value: float)

16 -> torch.Tensor:
17 output = x with fastpass.clone()
18 output[:, -1, :] = value

19 return output

Listing 5: Forward pass method of the Highway class

We see the call to set fast pass token(), and the data copy in its its implemen-
tation. While seemingly inefficient, this approach is required for export to ONNX.
The compilation method needed for ONNX conversion does not support in-place
value assignments — Also known as aliasing — (e.g., x_with fastpass[:, -1, :]
= value in Python), as such operations create issues during computation graph
compilation.

Results from a test run with the same configuration as the reported by LGViT
wa run and it’s results are presented later on in Section 5.3.2 as part of the
benchmark studies.

42 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

5.3 Benchmarking

5.3.1 Latency Profiling Study

To gain insight into the computational cost of the EEVIT model during inference,
I conducted a comprehensive profiling study of the model, focusing on the
operations in the encoder. The torch.profiler toolset from PyTorch provides
detailed performance metrics, allowing us to identify computational bottlenecks
and understand the latency contributions of different model components.

Methodology

The profiling was conducted using the following approach:

e The analysis focused on three distinct layer groups within the model:

» Group 0 (No early-exit): Layers without early exits (layers 0-2, and 11)
» Group 1 (LPH): Layers with Local Perception Head exits (layers 3-6)
» Group 2 (GAH): Layers with Global Aggregation Head exits (layers 7-10)

e To capture the computational cost of all layers, the early exit mechanism was
disabled, i.e. the computations were carried out but the decision to exit early
was not taken.

e Model execution was captured using PyTorch’s Profile context manager API,
which records operator execution times, input shapes, stack traces, and device
kernel activity

e A warmup phase with 200 iterations using randomized data was implemented
to ensure stable performance measurements.

e Both CPU and GPU implementations were profiled to compare performance
across devices.

e Due to the large size of profiling data, statistical analysis was performed on a
random sample of 50 inference runs.

Initial Findings and Challenges

My initial profiling , done for the CPU case, gave results that presented some
unexpected patterns, as shown in Table 5. Surprisingly, layer group 0 (without
early exits) appeared to be slower than group 2 (with GAH exits), which contra-
dicted our understanding of the model architecture since early exit layers contain
additional computation.

Layer Group | Avg (ms) [Std Dev | Min (ms) | Max (ms)

No early-exits 17.324 16.728 11.183 165.115
LPH 18.784 5.925 13.966 75.426
GAH 16.865 3.591 13.057 28.778

Table 5: Initial statistics for the layer groups

To investigate this anomaly, I expanded the profiling to analyze each layer indi-
vidually, as shown in Table 6. This revealed that layers 0 and 1 were significantly
slower than other layers and exhibited much higher variability in execution time.

43 / 69

Study of Early Exit Neural Networks for Computer Vision

Layer | Avg (ms) | Std Dev [Min (ms) | Max (ms)
0 20.357 26.406 11.296 165.115
1 19.827 19.545 11.183 100.164
2 14.848 4.011 11.315 25.263
3 19.900 9.155 14.231 75.426
4 18.853 4.540 14.296 27.953
5) 18.401 4.356 14.048 31.455
6 17.981 4.130 13.966 29.400
7 17.169 4.023 13.057 28.778
8 17.010 3.289 13.750 23.959
9 16.695 3.502 13.260 24.877
10 16.587 3.586 13.152 24.996
11 14.262 3.083 11.721 21.877

Table 6: Initial statistics for the all attention layers

DTU

Further investigation of the execution timeline for layers 0, 1, and 2 (shown in
Figure 21) indicated that the initial runs showed greater variability, suggesting
insufficient warmup.

Layer Latency Timeline Across Runs

—e— layer 0
—o— Llayer_1
—e— Llayer 2

160

140

120

i
o
S

Latency (ms)

®
o

60
40
2 ‘ M

1 6 11 16 21 26 31 36 41 46
Run Number

Figure 21: Latency for layers 0,1 and 2 across all profiling runs. 50 warm-up
iterations.

Improved Methodology and Results

To address these issues, I increased the warmup phase from 20 to 100 iterations.
This significantly improved the stability of the measurements, as shown in
Figure 22. I then decided to increase the iteration number to 200, and again the

44 / 69

Study of Early Exit Neural Networks for Computer Vision DTU
stability improved, albeit slightly less significant, as can be seen in Figure 23. With
the improved methodology, not only the timeline for layers 0, 1, and 2 showed more
consistent behavior, but less high latency outliers run occur, as can be appreciated
from contrasting Figure 22 and Figure 23. I decided then to set the iterations
at 200.

Layer Group | Avg (ms) [Std Dev | Min (ms) [Max (ms)

No early-exit 14.777 11.378 11.148 98.959
LPH 16.763 4.921 13.944 77.302
GAH 15.609 2.424 13.614 23.913

Table 7: Layer groups profiling with 200 warmup iterations. We see the no early-
exits layer group behaving more stable and slightly faster than the rest

Layer Latency Timeline Across Runs

—e— Layer 0
—o— Layer_1
—e— Llayer 2

80

@
o

Latency (ms)

N
o

20

MMNQ/\A.A

1 6 11 16 21 26 31 36 41 46
Run Number

Figure 22: Latency after 100 warm up iterations, for layers 0,1 and 2 across all
profiling runs

Why did this work?

The improvement in measurement stability following the increase in warmup
iterations can be attributed to several factors:

Parallelism and multithreading:
PyTorch internal operations library ATen implements multithreading operations
with the OpenMP library, and uses all the available CPU cores. This can lead to
oversubscription to the memory caches, which The OS scheduler may take time
to allocate threads optimally across CPU cores.(Team, 2025b)!!

HThe default library is OpenMP and the default number of threads is the number of CPU
cores (Team, 2025b)

45 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

Cache Warming;:
Local memory caches need time to be populated with frequently accessed data:
The first few iterations may load data and instructions into CPU caches (L1, L2,

L3). As the model runs longer, more computations fit into caches, reducing access
to slower RAM.

Layer Latency Timeline Across Runs

100 —e— Layer 0
—o— layer_1
—o— Llayer_2

80

-
o

Latency (ms)

40

20

= m = 55

1 6 11 16 21 26 31 36 41 46
Run Number

Figure 23: Latency after 200 warm up iterations, for layers 0,1 and 2 across all
profiling runs

GPU Performance Analysis

After establishing a reliable profiling methodology, I conducted similar measure-
ments on GPU hardware. The results are presented in Table 8.

Layer Group | Avg (ms) | Std Dev | Min (ms) | Max (ms) | Count

No early-exit 2.775 9.931 1.092 72.840 200
LPH 5.027 1.324 4.625 23.045 200
GAH 4.626 0.247 4.425 6.012 200

Table 8: Attention Latency by Layer Group. GPU case

Figure 24 shows the latency for representative layers from each group, highlighting
the consistent pattern of increased latency in layers with early exits compared to
those without.

46 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

Layer Latency Timeline Across Runs

80
—e— Llayer 2

—e— Llayer 3
—o— layer_7

70

60

50

Latency (ms)

30

1Ay

10

1 6 11 16 21 26 31 36 a7 46
Run Number

Figure 24: Latency for layers 2, 3, and 7 on GPU across all profiling runs

Key Findings
With the stabilized profiling methodology, we can now answer important questions
about the computational cost of different components:

1. What is the latency of a standard attention block without early exits?
2. How much additional latency do different types of early exit mechanisms (LPH
and GAH) introduce?

Table 9 summarizes these findings across both CPU and GPU implementations.

Device | No early-exits [ms] | LPH Layer [ms] GAH Layer [ms]
CPU 14.777 + 11.378 16.763 + 4.921 (13%) | 15.609 £ 2.424 (6%)
GPU 2.775 £ 9.931 5.027 + 1.324 (81%) | 4.626 + 0.247 (67%)

Table 9: Latency comparison between layer types.
In parenthesis is the increment percentage w.r.t no early-exit layers

A striking observation is that the relative overhead of early exits differs dramat-
ically between platforms—much higher on GPU (67-81%) compared to CPU
(6-12%). This platform-dependent behavior warranted deeper investigation into
the underlying causes.

For CPU execution, profiling visualization in Figure 25 reveal that the early
exit computation time is comparable to standard self-attention operations. The
segment labeled eevit/vit classes.py(171) inside of the red square corresponds

A7 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

to the computation of the Q, K, and V matrices, while AttentionMLPs represents
the second part of the attention block. In this environment, the Highway module
accounts for less than a quarter of the total execution time, explaining the
relatively modest overhead.

eevit/vit_classes.py(171): <listcomp> 1 nn.Madule: AttentionMLPs_3

od n L g chi.. TOICN/ NN/ MOAUISS/ MOaUIE. Py 1 /
torch/nn/modules/m. dule eevit/vit_classes.py(1

= Py
nn.Module: Seq.. '
tort -]| torchon,
torch/nn/modul.. | T
nn.Module: l"t
torch/nn/mo...
atenzaddmm = torch/nn/mo._
torch/nn/mo...

aten::_conv.
atenzmkdd

Figure 25: Profiling visualization for CPU execution of attention layer 3

GPU execution presents a different profile. For layers without early exits (layers
0 and 1 in Figure 26), we observe a significant latency bottleneck in the
cudaStreamSynchronize operator within the aten::is nonzero operation. In the
example shown, approximately 4.1 ms is spent in attention 0.forward plus
aten::is nonzero, of which only 1.3 ms represents relevant computational logic.

nn_Module: Attention_0 - [1ms 39%us 86ins] P e

atenzitem

cudaStreamSynchronize

atenzis_nonzero

es/module.py(1743). “ atenzitem
eevit/vit_classes. py(162): forwa_

cudaStreamSynchronize

Figure 26: Profiling visualization for GPU execution of layers 0 and 1

This inefficiency stems from the fast-pass implementation as shown in Listing 3.
The conditional statement on lines 8-13 check if the fast-pass token has a truthy
value to determine whether to compute the next layer or skip further processing.
This implementation forces a CUDA synchronization, as evaluating the tensor’s
truth value requires transferring data from GPU to CPU, creating a performance
bottleneck. Interestingly, this synchronization overhead is substantially lower in
layers with early exits, as demonstrated in Figure 27, though the exact reason for
this difference remains unclear.

48 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

nn.Module: Attention_3 eevit/utils.py(24): get_fast_pass atencis_nonzero - [16us 608
torch/nn/modules; <built-in method clone of .. ten. at. atenzitem
i aten::clone
atenzcopy_

Figure 27: Profiling visualization for GPU execution of early exit layer3. The
latency of its aten:is nonzero is less than 0.02 ms

For layers with early exits, the dominant performance factor is the aten::copy
operation (Figure 28), which consumes more than half of the layer’s execution
time. When profiling without stack tracing—capturing only aten operations—
computation time drops to around 1 ms, but the aten::copy operation still
requires approximately 2 ms (Figure 29).

nn.Module: Attention_3

eevit/_ ee\rrt.l'ee classes. p)rfzaal) fnrward

N . ||_ n|;ll \ nn.Module: nghwayCo... <built-in meﬂlodtuofTensoruhectat
|t I a

| t eem.fee classes.| py
| nn. Mod | A F atenzcopy_
[t] or I | i

torch cudaStreamSynchronize
talchl =
|nn_
AA A
14

A

Figure 28: Complete GPU execution of early exit layer3. Visualizing also the
call stack

| [vrs e [oo 3ms 7%%us 756ns [e o [|

model_inference
aten:to - [2ms T16us 486ns]

Figure 29: Complete GPU execution of early exit layer3

49 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

This overhead is directly attributable to the fast-pass token implementation in
the Highway class (Listing 5), whose drawback and benefits are mentioned in
Section 5.2.5

5.3.2 Threshold Study

To establish a baseline for my implementation and evaluate the impact of early exit
configurations, I conducted a comprehensive threshold study based on the original
LGViT model. The authors of LGViT configured their model with a confidence
threshold of 80% for the highway classifiers, which serves as our reference point.
To validate my implementation and understand the effects of early exits, I repli-
cated the benchmark experiment on the CIFAR100 dataset’s training set under
identical conditions, particularly maintaining the 80% confidence threshold for
highway classifiers. The speedup is computed using the same formula reported in
the LGViT work:

L .
_ Lxm
Speed-up = —5— -
jop b XM

Where L represents the total number of layers and m® denotes the number of
samples exiting at layer ¢. This formula effectively compares the computational
cost of processing all samples through the entire network versus the reduced cost
achieved through early exits.

To have a reference baseline for the coming experiments, two reference base
experiments were ran, and their results are presented in Table 10, which shows a
comparison between a model with no early exits and the original LGViT config-
uration. Detailed information about the exit distribution, accuracy, and average
speed per exit for the 80% threshold is shown in Figure 30.

Configuration Accuracy Avg. [%] | Speed-Up
No Early-Exits 90.24 x1.0
Original LGVIiT configuration 87.31% x2.08

Table 10: baseline results for measurement of accuracy and latency for the
CIFAR100 dataset

50 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

pytorch_gpu | results_Th_80% - Exit Statistics Analysis
4330 Sample Distribution Across Exits Accuracy by Exit Point
== Overall A (87.3%)
100 ---- Overall Accuracy .
4000 %4:4%90.8%g; 50,)
-5%85.6%,
%] OLO/
%_ __ 80 75.9%
£ 3000 IS 65.3%
© = 56.4%
v 2 60
n.s ©
o
5 2000 3 38.7%
Q 1136 g %
£ 943 894 (11.4%)
Z 1000 (9.4%X8.9%)
20
0 I @ O O > 0 5 X 6 o A 5 .9 A
& & &S S S S @'00 <« & & &S &S Q'-\O <
Exit Point Exit Point
Inference Time by Exit Point Accuracy vs Inference Time
Exit3
601 ---- Overall Avg. Time (28.1ms Exit 4
9 {) 90 L\ oEXItS £it 6
50 ® oEXit7
=80 Exit 8
@ 40 = °
1S >70)
~ 2 Exit 9
o L] S—— < L
= g 60 SEXit 10
20 <
50
10
40 .Fi al
0
5 N 6 6 A > 5 0 & 20 25 30 35 40 45 50 55
B o K K o B . Nl .
& & &S &S S & <® Inference Time (ms)
Exit Point

Figure 30: exits statistics with confidence threshold of 80%

The hypothesis that the model was optimized for the specific 80% confidence
threshold during training was considered. Thus, to verify whether altering this
threshold without retraining would incur costs in accuracy, latency, or both,
additional experiments were conducted with elevated thresholds of 90% and 99%.
The exit statistical results for the latter one are presented in Figure 32

As shown in Figure 31, increasing the confidence threshold pushes samples to
exit at deeper network layers. At 80% threshold, layer 3 processes most samples,
becoming the most computation-saving layer. At 90%, exits become more evenly

distributed across layers, while at 99%, layer 7 becomes the predominant exit
point.

51 / 69

Study of Early Exit Neural Networks for Computer Vision DTU
Sample Distribution Across Exit Points
43.3% mm Th_80%
= Th 90%
40% mm Th_99%

.3%

30%

20%

Percentage of Total Samples (%)

5%
10%

21.0%

10.9%

3.2%

44

20.4%

3.1

& & &

15. ‘T/g% 15.
1% 11.
0
% 9. 1?/8% 83' D%
6% 6.8
5.0
0% © A >
‘o& ‘é& &

s
Exit Point

5.4%
2.2
‘é&g

&

')a/

Figure 31: sample distribution for thresholds 0.8, 0.9 and 0.99

Threshold Accuracy [%] | speed-up
0.80 (LGVIT config) 87.31% x2.08
0.9 89.41% x1.86
0.99 90.36% x1.48

Table 11: Changes in accuracy and speed-up w.r.t the original LGViT configu-

ration

From Figure 33, we can observe that accuracy increases proportionally with
threshold values at each exit point, while latency remains relatively unchanged, as
expected. The overall average accuracy and speedup for each threshold configu-
ration is summarized in Table 11. The results reveal an interesting trade-off: higher
confidence thresholds improve accuracy but reduce computational efficiency. The
99% threshold nearly matches the accuracy of the non-early-exit model (90.36% vs.
90.24%) while still providing a significant x1.48 speedup. Meanwhile, the original
80% threshold configuration offers the highest speedup (x2.08) but at the cost of
approximately 3% lower accuracy compared to the baseline.

Interestingly, my implementation achieved a speedup of x2.08, which is slightly
higher than the x1.87 reported in the original LGViT paper. This discrepancy
persisted even when running benchmarks with their implementation.

52 / 69

Study of Early Exit Neural Networks for Computer Vision DTU
pytorch_gpu | results_Th_99% - Exit Statistics Analysis
Sample Distribytjon Across Exits Accuracy by Exit Point
2039
(20.4%) ---- Overall Accuracy (90.4%)
1004 99:7%99.3%98.8%98.9%_ " el s
= 80
X
1149 17 >
(11.5%11'(1’30) > 6o 62.2%
@©
S
S 40
<<
20
I T T T WL > 0";&‘3&)’\%@ >
Q Q
FEEFTTELSE & & E & F
Exit Point Exit Point
Inference Time by Exit Point Accuracy vs Inference Time
Exit3—Exit a4 Ex EXT6 cu:
601 ---- Overall Avg. Time (37.8ms) 1001 @77 " " TQEXit SQEXILE Exit 7 ats
50 9 Exit 9 gxit 10
90
q
G 40 s
2 NS
° 8 80
30 §
£
20 275
70
10
65 Final
O’bv‘ob’\‘b(bb\ 20 25 30 35 40 45 50 55
& &S S SS d\o <® Inference Time (ms)
Exit Point
Figure 32: exits statistics with confidence threshold of 90%
Accuracy vs Latency by Exit Point
;) Th_80%
100 2Exit 3 AExit 4 . : _
mExit 3 AExit 5 AExit 6 AExit 7 m Th 90%
Exit3 mExit4...__ BExit 5 AExit 8 A Th 99%
--mExit 6 ;
SExit 4 el AExit9 AExit 10
20 TmExit 7
Exit 5)
Exit 6 “-mExit 8
Exit 7
8o CmExit 9
_ Exit 8 ;
X
> .
§ 70 ‘mExit 10
3 . \
é(‘j e Exit9
AFinal
60 :
«Exit 10
50 \
wFinal
40 Final
20 25 30 35 40 45 50 55
Inference Time (ms)

Figure 33: Accuracy vs Latency comparison for thresholds 0.8, 0.9 and 0.99

5.3.3 Platforms Performance Benchmark (working title)

To evaluate the performance of my model under production-like environment
conditions, tests were conducted using the ONNX model only, on both a standard
PC and a Jetson AGX Orin, which acts as the edge computing platform.

53 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

The PC testing environment featured an Intel Core i7-9750H CPU (6 cores, 12
threads) with 12 MB of L3 cache, along with an NVIDIA GeForce GTX 1650
GPU with 4GB of VRAM. For the edge computing environment, the NVIDIA
Jetson AGX Orin was used, which is equipped with a 12-core Arm Cortex-A7T8AE
CPU with 6MB of L3 cache and 2048-core NVIDIA Ampere architecture GPU.
The benchmark methodology used is the same as in Section 5.3.2, namely using
the test set of CIFAR100.

The results, presented in Figure 34, reveal several interesting patterns. Firstly,
the accuracy values were consistently maintained across all platforms for each exit
point and for the overall model performance, confirming that the model’s behavior
was preserved by the ONNX export faithfully.

Accuracy vs Latency by Exit Point

Exit Exit 3 Exit 3 Exit 3 orin onnx cpu
orin onnx cpu (Overall)
orin onnx gpu

orin onnx gpu (Overall)
pc onnx cpu

pc onnx cpu (Overall)
pc onnx gpu

pc onnx gpu (Overall)

Exit Exit 4 Exit4 Exit4

Y [gkits @ Exits Y A Exits Y @Exits
Exit 6

Exit 6) Exit 6

Exit 7 Exit 7 Exit 7 Exit 7

Hoxtrburte

Exit 10 Exit 10 Exit 10 Exit 10

Accuracy (%)

0 25 50 75 100 125 150 175 200
Inference Time (ms)

Figure 34: latency-accuracy tradeoff in different hardware targets

From a latency perspective, the slowest configuration is given by the Orin’s CPU,
followed by the PC’s CPU. GPU acceleration provided significant speedups, with
the PC’s GPU performing better than these CPU implementations, while the
Orin’s GPU delivered the fastest overall performance.

Interestingly, I observed a counterintuitive result: while the PC outperformed
the Orin in CPU-based inference, the situation was reversed for GPU acceleration,
with the Orin’s GPU achieving better performance than the PC’s discrete graphics
card. This may be attributed to the specialized architecture of the Orin’s GPU,
which is optimized for machine learning workloads.

54 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

5.3.4 Performance on CIFAR100

To better understand how the early exit architecture performs across different
visual categories, I conducted a benchmark study!? examining the model’s behav-
ior with respect to individual classes in the CIFAR100 dataset. This analysis aimed
to uncover patterns in how different visual categories interact with the early exit
mechanism, potentially revealing insights about which types of images benefit
most from this approach.

Threshold 80% - Class Latency vs Accuracy (Top/Bottom Classes)

Class Latency vs Accuracy
85

94

~
u1

53 89 Top Accuracy Class ID Mapping:
82 ® Bottom Accuracy Top Accuracy:
5| o e Top Speed 53: orange (97.0%)

75: skunk (98.0%)
85: tank (98.0%)

89: tractor (97.0%)
94: wardrobe (98.0%)

® Bottom Speed

O
o

Bottom Accuracy:

;\3 10: bowl (72.0%)
= 35: girl (68.0%)
> 851 47: maple_tree (70.0%)
g 52: oak_tree (74.0%)
S 98: woman (74.0%)
S 804 11 Top Speed:
< @55 39: keyboard (22.2ms)
] 68: road (22.3ms)
82: sunflower (21.5ms)
751 52 98 .72 Bottom Speed:
10 11: boy (37.5ms)
55: otter (37.6ms)
a7 72: seal (37.4ms)
70
Correlation: -0.88 35
22 24 26 28 30 2 34 36 38

Average Inference Time (ms)

Figure 35: Accuracy-latency for top/bottom 5 classes of CIFAR100

Figure 35 presents the performance metrics for the top and bottom five classes
in terms of both accuracy and inference speed. A clear pattern emerged when
examining the exit point distribution for these classes, as shown in Figure 36.
Notably, the most accurately classified and fastest processed classes predominantly
exited at layer 3 - the earliest point in the network.

2with the confidence threshold of 0.8

55 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

Threshold 80% - Exit Modes by Class Performance (Combined)

Most Common Exit Layer by Class Performance

68.0% 37.0ms 37.oms

~

s Top Accuracy
W Bottom Accuracy
B Top Speed

s Bottom Speed

o

v

IS

98.0% 98.0% 70.0%

Exit Layer
w

N

* NS o N @ 5 5
= & «© 8§ Ry < $ &
) N Q& &
R N
& o
Classes

Figure 36: Most common exit for top/bottom most accurate classes

To visually investigate the characteristics of these classes, I examined samples
from four representative categories highlighted in the exit distribution analysis.
The detailed exit distribution for these standout classes is further illustrated in
Figure 37. In it we see that the model specializes for the best-performing classes,
exiting quite early for a large proportion of their samples.

Threshold 80% - Exit Distribution for Top & Bottom Classes

Most Accurate Class: skunk (Accuracy: 98.0%) Fastest Class: sunflower (Latency: 21.5ms)

574

€ €60
3 40 3
o O 50
[} o
230 S 40
€ €
& 20 {30
20
10 10 s
3 3 3 1
0 ” ™ 9 © A ?® 0 v o A ? L)
. 2
Q)}’ Q,*:\" Q;\:\" ({/‘\-\& Q/‘\:\g' <<;\§' <& Q;\:\g' C‘:\" C"\“ Qj:\" <<;\§'
Exit Point Exit Point
Least Accurate Class: girl (Accuracy: 68.0%) Slowest Class: otter (Latency: 37.6ms)
22 30 30

Sample Count
Sample Count
Ll = N N
o w o w

O]

o

K “ A L 9 Q > % L “ © A > 9 Q >
X X X X X R N X X N N X K XY 2
FFFFFFF <€ FFFFFFF €
Exit Point Exit Point

Figure 37: Exit distribution for top/bottom most accurate and fastest classes

Figures 39, 40, 41, and 38 each display 15 sample images from their respective
classes. A pattern becomes apparent: classes “skunk” and “sunflower” show

56 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

remarkably consistent visual features across samples. In contrast, “girl” and “seal”
images exhibit much greater variation in appearance, pose, and background.

Class 82: sunflower (test split)
Label sunflower Label: sunflower Label: sunflower Label: sunflower Label: sunflower
ID: 63 ID: 97 ID: 19 ID: 91

i

Label sunflower Label: sunflower Label: sunflower Label: sunflower Label: sunflower
ID: 71 ID: 57 ID: 24 ID: 14

-y

Label sunflower Label: sunflower Label: sunflower Label sunflower Label: sunflower
ID: 50 ID: 84 ID: 66

Figure 38: Sample image of Sunflower class

Class 75: skunk (test split)
Label: skunk Label: skunk Label: skunk Label skunk Label: skunk
ID: 30

ID: 71 ID: 50 ID: 17

Label: skunk Label: skunk Label skunk Label skunk Label: skunk
ID: 87 ID: 11 ID: 77

Label: skunk Label: skunk Label: skunk Label: skunk
ID: 60 ID: 66 ID: 49 ID: 85

57 / 69

Figure 39: Sample image of Skunk class

Study of Early Exit Neural Networks for Computer Vision DTU

Class 72: seal (test split)
Label: seal Label: seal Label: seal Label: seal Label: seal
ID: 15 ID: 76 ID: 31 ID: 70 ID: 4

R

.m

Label: seal Label: seal Label: seal Label: seal Label: seal
ID: 49 ID: 38 ID: 67 ID: 24 ID: 3

-a
"
=

Label: seal Label: seal Label: seal Label: seal
ID: 9 ID: 18 ID: ID:

E—
o
.m
.m
o

Figure 40: Sample image of Seal class

Class 35: girl (test split)
Label: girl Label: girl Label: girl Label: girl Label: girl
ID: 25 ID: 43 ID: 34 ID: 65 ID: 61

w
-! :
g
Em

Label: girl Label: girl Label: girl Label: girl Label: girl
ID: 40 ID: 11 ID: 39 ID: 19 ID:

.

=
T

Label: girl Label: girl Label: girl Label: girl Label: girl
ID: 20 ID: 16 ID: 97 ID: 27

ID: 77

Figure 41: Sample image of Girl class

58 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

6 Discussion

This work aimed to assess the effort needed to deploy early-exit neural networks
in production environments with minimal dependencies requirements. Together
with it, it set itself to extend the understanding behind the performance of such
models, focusing on the performance of their individual exits.

6.1 On Deployment

Prototype models (as those from research work presented in publications) are
justifiably implemented not with deployment in mind, hence making them difficult
to adopt. The new implementation presented here answers to the production
environment requirements previously mentioned, since it provides a way to export
easily a framework-agnostic version of the model, based on ONNX standard.

Some challenges faced were related to the complexity of the original codebase,
which obscures the core logic of the model. Moreover, the development of this
kind of network, when taking deployment into consideration, force the developer
to consider to consider the requirements set by yhe exporting tools, which likely,
as was the case here, will impact in some degree the code itself.

This contribution allows for the model to be tested with ease in more environ-
ments not bounded by the need to install the heavy PyTorch package or any
other development framework. Looking beyond the specific logic of the LGViT
model, the implementation shows that it can be used for any case where the neural
network has a decision based computation flow. Finally, the designed choices taken
allow for flexibility in the specification of exit type and placement, allowing for
easier benchmark, which this work directly benefited from.

6.2 On Performance
As for the benchmarking studies, the following can be concluded:

The profiling study (Section 5.3.1) shows that the inclusion of early exits
in this model brings with it latency overheads at the attention block level,
particularly significant in the GPU execution of it. However, the absolute cost of
the early-exits is heavily related to their implementation, and therefore can be
mitigated. Two examples illustrate this:

1. The mechanism that assign the value to the fast-pass token brings with it

additional overhead, as can be seen in Figure 29
2. The exit mechanism brings important latency overhead when evaluating the

initial non-early-exit attention blocks, as can be appreciated in Figure 26.

Although it is related to the implementation, it remains unclear why this occurs.

However, despite these implementation-related performance penalties, the overall
time savings from early exits remain substantial. The additional computation
introduced by early exit mechanisms is significantly outweighed by the compu-

59 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

tation avoided when skipping remaining layers, confirming the effectiveness of the
approach even with current implementation constraints.

From the threshold study (Section 5.3.2) we can further conclude that
the exit configuration for the LGViT has more than one configuration setting,
particularly for the confidence threshold, that yields satisfactory results. A very
interesting result, is that for the threshold of 80%, exit three processes the signif-
icant majority of the results, confirming the observation in other works of similar
behavior, as mentioned in this work’s introduction.

Furthermore, changing the threshold shows that the model has more than one
satisfactory confidence configuration. When changing the threshold to 99%, the
model main exit is then the one at the seventh layer. This configuration increases
the accuracy of all exits, and although yield a lower speed-up factor than the
original 80% configuration, it is in fact interesting that it would perform better,
particularly because the model was trained with the 80% threshold.

I theorize that this has to do with the distillation characteristic of the training;
The wvanilla ViT with no exits scores 90.24% and its trained classifier is used in
training the intermediate ones via knowledge distillation. It seems that this yields
benefits for the performance of these intermediate classifiers.

From class-wise study of Section 5.3.4, the analysis can be quite rich. Seeing
that there is a big performance difference among classes (Figure 35), we can
initially conclude that some characteristic within each class renders them easier or
more challenging to predict, which is hardly a discovery. What is more interesting
is that the most accurately predicted classes are also the fastest to exit the model.

This observation suggests a relationship between visual feature consistency and
early exit behavior. Classes with low intra-class variability appear to be processed
more efficiently by the model, allowing confident predictions at earlier network
stages. The model effectively learns to recognize these more consistent visual
patterns with fewer layers of computation, reserving deeper processing only for
more varied or challenging examples.

This is explained by the fact that classes being exited early require by definition
less processing, and the fact that they are being accurately classified implies that
their visual features are less complex than those from other classes.

This leads to the conclusion that classes with low variance in their visual features
will exit early and be classified more accurately. Supporting this claim we see the
examples from the best-performing/fastest classes in figures 38 and 39 and for the
worst performing classes, we see figures 41 and 40.

The platform benchmark comparison (Section 5.3.3) shows that the
benefits of early exiting aer also profitable on edge computer. We see a clear
best performer in the GPU case for the edge computer, and interestingly, it’s

60 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

CPU performance being worse than both CPU and GPU cases for the consumer
computer, which must be noted carries a relatively old processors CPU/GPU.
This might be related to the fact that the GPU in the Orin is of ARM architecture
with a lower cache size despite having a higher memory bandwidth (204.8 GB/s
for the Orin and 21.33 GB/s for the PC).

6.3 General Remarks

This work has contributed a study on the ease of deployment and performance
characteristics of LGViT early-exit model. We can conclude that the model, after
thorough re-factorization has been made deployable to environments that cannot
have the framework in which it was originally developed. This new version of the
model displays same level of performance of the overall model.

Furthermore, based on the studies carried out, some deeper understanding of
the behavior of the model has been found, which invites interesting conclusions.

This relationship between visual feature consistency and early exit behavior
has interesting implications for real-world applications, among others, in domains
like robotics navigation. Consider a vision model trained on data captured under
good lighting conditions. When deployed in similar favorable conditions, the model
would likely process most inputs through early exits, allowing for faster inference
speeds. However, if lighting conditions deteriorate, the model would automatically
route more samples through deeper layers, maintaining prediction quality at the
cost of increased processing time.

Such adaptive processing creates opportunities for dynamic control of opera-
tions, based on perception difficulty. In robotics navigation, for example, this
behavior could enable speed optimization based on environmental conditions.
When visual conditions are optimal, a robot could operate at higher speeds since
the perception module processes visual information rapidly through early exits.
Conversely, in challenging visual environments such as low light or complex scenes,
the system would naturally slow down as more inputs require deeper processing,
effectively mimicking how humans adjust driving speed based on visibility condi-
tions.

This parallel to human behavior is instructive - just as drivers naturally reduce
speed at night when visibility is compromised, an early exit vision system takes
more processing time when input quality degrades. The result is a control system
that dynamically adapts its control signal rate based on input complexity, oper-
ating always in the safest, fastest rate across varying conditions that circumstances
allow.

Furthermore, from a safety assessment perspective, the dynamic nature of this
models raises the need to specify their behavior ina more detailed way than by just
stating their latency. Some insight in the relation of that latency to the dataset is
necessary, in order to better estimate the performance of the model in novel data

61 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

entries. The need for low latency can be amplified further if we could understand
better which data can yield the best results.

62 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

7 Future Work

The early-exit paradigm used in Vision Transformers could be leveraged to benefit
more practical tasks. For example, applying this principle to the Detection Trans-
former (DeTr) (Carion et al., 2020) would be valuable, targeting both the CNN
backbone and the transformer’s encoder or decoder components.

The main challenges would likely be in developing an appropriate training
scheme and determining the correct intermediate heads, particularly for the
decoder’s cross-attention mechanism. This research direction is especially inter-
esting as it connects with work that has already leveraged transformers for
real-time applications, such as RT-DeTr (Zhao et al., 2024) or MonoNav (Simon
& Majumdar, 2023), both of which employ transformers in scenarios where low
latency is highly desirable.

Beyond classification tasks, it would be interesting to explore applying early-
exits to other data structures where transformers have proven effective. For
instance, the Point Transformer (Zhao et al., 2021), used for point-cloud classifi-
cation, could serve as an excellent starting point for extending these techniques
to 3D applications.

Following the insights from our class-wise study, feature visualization studies
could help better understand the relationship between early exiting and the high
accuracy we observed. Similar to the attention mapping done in the original ViT
work (Dosovitskiy et al., 2021), a qualitative assessment of what each exit learns
would be valuable. While LGViT conducted similar work, they did so to determine
what kind of highway to place where, rather than examining the exits after training
with highways in their final positions.

63 / 69

Study of Early Exit Neural Networks for Computer Vision DTU

Bibliography

1]

D. Azizov et al., “A Decade of Deep Learning: A Survey on The Magnificent
Seven,” ArXiv, 2024, [Online]. Available: https://api.semanticscholar.org/
CorpuslID:274982049

S. Teerapittayanon, B. McDanel, and H. T. Kung, “BranchyNet: Fast Infer-
ence via Early Exiting from Deep Neural Networks,” in 23rd International
Conference on Pattern Recognition (ICPR), 2016, pp. 2464—2469.

F. D. Keles, P. M. Wijewardena, and C. Hegde, “On The Computational
Complexity of Self-Attention,” 2022, [Online]. Available: https://arxiv.org/
abs/2209.04881

S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma, “Linformer: Self-Atten-
tion with Linear Complexity,” CoRR, 2020, [Online]. Available: https://
arxiv.org/abs/2006.04768

Z. Liu et al., “Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows,” CoRR, 2021, [Online]. Available: https://arxiv.org/abs/
2103.14030

F. Montello, R. Giildenring, S. Scardapane, and L. Nalpantidis, “A Survey
on Dynamic Neural Networks: from Computer Vision to Multi-modal Sensor
Fusion.” [Online|. Available: https://arxiv.org/abs/2501.07451

S. Scardapane, M. Scarpiniti, E. Baccarelli, and A. Uncini, “Why should
we add early exits to neural networks?,” CoRR, 2020, [Online]. Available:
https://arxiv.org/abs/2004.12814

P. Panda, A. Sengupta, and K. Roy, “Conditional Deep Learning for
Energy-Efficient and Enhanced Pattern Recognition,” CoRR, 2015, [Online].
Available: http://arxiv.org/abs/1509.08971

Y. Kaya and T. Dumitras, “How to Stop Off-the-Shelf Deep Neural Networks
from Overthinking,” CoRR, 2018, [Online]. Available: http://arxiv.org/abs/
1810.07052

G. Xu et al., “LGViT: Dynamic Early Exiting for Accelerating Vision
Transformer,” in Proceedings of the 31st ACM International Conference on
Multimedia, in MM '23. Ottawa ON, Canada: Association for Computing

Machinery, 2023, pp. 9103-9114. doi: 10.1145/3581783.3611762.

A. Vaswani et al., “Attention is All You Need,” Advances in Neural Infor-
mation Processing Systems, vol. 30, 2017.

A. Rush, “The Annotated Transformer.” 2018.
A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers

b

for Image Recognition at Scale,” in International Conference on Learning

Representations, 2021.

64 / 69

https://api.semanticscholar.org/CorpusID:274982049
https://api.semanticscholar.org/CorpusID:274982049
https://arxiv.org/abs/2209.04881
https://arxiv.org/abs/2209.04881
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2501.07451
https://arxiv.org/abs/2004.12814
http://arxiv.org/abs/1509.08971
http://arxiv.org/abs/1810.07052
http://arxiv.org/abs/1810.07052
https://doi.org/10.1145/3581783.3611762

Study of Early Exit Neural Networks for Computer Vision DTU

[14]

[15]

[16]

[17]

[18]

[22]

23]

[24]

[25]

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding,” CoRR, 2018,
[Online]. Available: http://arxiv.org/abs/1810.04805

A. Bakhtiarnia, Q. Zhang, and A. losifidis, “Multi-Exit Vision Transformer
for Dynamic Inference,” arXiv preprint arXiv:2106.15183, 2021.

X. Li et al., “Predictive Exit: Prediction of Fine-Grained Early Exits for
Computation- and Energy-Efficient Inference,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 37, no. 7, pp. 8657-8665, Jun. 2023,
doi: 10.1609/aaai.v37i7.26042.

H. Rahmath P, V. Srivastava, K. Chaurasia, R. G. Pacheco, and R. S. Couto,
“Early-exit deep neural network-a comprehensive survey,” ACM Computing
Surveys, vol. 57, no. 3, pp. 1-37, 2024.

T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama, “Adaptive Neural
Networks for Fast Test-Time Prediction,” CoRR, 2017, [Online]. Available:
http://arxiv.org/abs/1702.07811

F. Xia, “Exploring Early Exiting Strategies for Deep Neural Networks,”
Princeton, NJ, 2024. [Online]. Available: http://arks.princeton.edu/ark:/
88435 /dsp0179408155k

ONNX Community, “ONNX Documentation.” [Online|. Available: https://
onnx.ai/onnx/index.html#

ONNX Project Contributors, “Open Neural Network Exchange Intermedi-
ate Representation (ONNX IR) Specification.” [Online|. Available: https://
github.com/onnx/onnx/blob/main/docs/IR.md

R. Mario, “JIT — PyTorch Training Performance Guide.” [Online]. Avail-
able: https://residentmario.github.io/PyTorch-training-performance-guide/
jit.html

P. S. Foundation, “PEP 523 - Changing Frame Evaluation API” [Online].
Available: https://peps.python.org/pep-0523/

P. Team, “torch.onnx.” [Online|. Available: https://pytorch.org/docs/stable/
onnx.html

PyTorch Team, “Higher-Order Operators.” [Online|. Available: https://dev-
discuss.pytorch.org/t/higher-order-operators-2023-10/1565

T. Wolf et al., “HuggingFace's Transformers: State-of-the-art Natural Lan-
guage Processing.” [Online]. Available: https://arxiv.org/abs/1910.03771

A. Krizhevsky, “Learning multiple layers of features from tiny images,” 2009.

P. Wang, “vit-PyTorch: Implementation of Vision Transformer in PyTorch.”
GitHub, 2025.

65 / 69

http://arxiv.org/abs/1810.04805
https://doi.org/10.1609/aaai.v37i7.26042
http://arxiv.org/abs/1702.07811
http://arks.princeton.edu/ark:/88435/dsp0179408155k
http://arks.princeton.edu/ark:/88435/dsp0179408155k
https://onnx.ai/onnx/index.html#
https://onnx.ai/onnx/index.html#
https://github.com/onnx/onnx/blob/main/docs/IR.md
https://github.com/onnx/onnx/blob/main/docs/IR.md
https://residentmario.github.io/PyTorch-training-performance-guide/jit.html
https://residentmario.github.io/PyTorch-training-performance-guide/jit.html
https://peps.python.org/pep-0523/
https://pytorch.org/docs/stable/onnx.html
https://pytorch.org/docs/stable/onnx.html
https://dev-discuss.pytorch.org/t/higher-order-operators-2023-10/1565
https://dev-discuss.pytorch.org/t/higher-order-operators-2023-10/1565
https://arxiv.org/abs/1910.03771

Study of Early Exit Neural Networks for Computer Vision DTU

[29]

[30]

[31]

32]

33]

P. Team, “CPU Threading and TorchScript Inference” [Online]. Avail-
able: https://pytorch.org/docs/stable/notes/cpu_ threading_ torchscript__
inference.html

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko,
“End-to-End Object Detection with Transformers,” CoRR, 2020, [Online].
Available: https://arxiv.org/abs/2005.12872

Y. Zhao et al., “DETRs Beat YOLOs on Real-time Object Detection.” [On-
line]. Available: https://arxiv.org/abs/2304.08069

N. Simon and A. Majumdar, “MonoNav: MAV Navigation via Monocular
Depth Estimation and Reconstruction,” in Symposium on FExperimental Ro-

botics (ISER), 2023. [Online|. Available: https://arxiv.org/abs/2311.14100

H. Zhao, L. Jiang, J. Jia, P. H. Torr, and V. Koltun, “Point transformer,” in
Proceedings of the IEEE/CVF international conference on computer vision,

2021, pp. 16259-16268.

66 / 69

https://pytorch.org/docs/stable/notes/cpu_threading_torchscript_inference.html
https://pytorch.org/docs/stable/notes/cpu_threading_torchscript_inference.html
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2304.08069
https://arxiv.org/abs/2311.14100

Study of Early Exit Neural Networks for Computer Vision

Annex

7.1 EEVIT UML diagram of components

contains’

contains

EEVIT

-patch_embedding: PatchEmbedding
-transformer: TransformerEnconder
-pool: str

-last_exit: Linear

+forward(image_tensor) : : Tensor
-last_classifier_fw(x, intermediate_predictions) : : Tensor
-fast_pass(x, predictions) : : Tensor

contains

TransformerEnconder

PatchEmbedding

-early_exits_enabled: bool
-layers: ModuleList<Attention>

-projection: Conv2d

-pos_embedding: Parameter
uses

+forward(x) : : Tensor
-_create_layers(config) : : void

+fast_pass(x_with_fastpass, predictions_placeholder_tensor) : : Tensor

-cls_token: Parameter
-num_patches: int

+forward(image_batch) : : Tensor

“\\\\\\\\\\\

contains

12

\‘
R

ModelConfig

Attention

+channels_num: int
+image_size: int

-num_heads: int

-scale: float

-norm_1: LayerNorm
-W_QKYV: Linear
-attention_output: Sequential
-mips: AttentionMLPs
“highway: Highway

+num_classes: int

+pool: str

+embed_depth: int
+patch_size: int
+num_attn_heads: int
+general_dropout: float
+transformer_dropout: float
+mlp_dim: int

+forward(x_with_fastpass, predictions_placeholder_tensor) : : Tensor

+dim_head: int
+num_layers_transformer: int

contains

+early_exit_config: EarlyExitsConfig
+enable_export: bool

contains optional

Highway

AttentionMLPs -layer_idx: int

-highway_type: str

DTU

-norm_2: LayerNorm
-mip_intermediate: Sequential
-mip_output: Sequential

+forward(x) : : Tensor

-init_kwargs: dict
-highway_head: Module
-classifier: HighwayClassifier
-exit_evaluator: ExitEvaluator

+from_model_config(config, idx) : : Highway
+forward(x_with_fastpass, predictions_placeholder_tensor)

:: Tensor

contains

HighwayClassifier

ExitEvaluator

-pooler: AdaptiveAvgPool1d
~classifier: Linear

-confidence_threshold: float

+: Tensor

+decision_tensor(logits) : : Tensorbool]

creates

Highway_DummyMLP

-layert: Linear
-relu: ReLU
-layer2: Linear

+forward(patch_embeddings, H, W) : : Tensor

uses

uses

v

EarlyExitsConfig

IntermediateHeadFactory

+enabled: bool
+embed_depth: int
+num_classes: int
+num_attn_heads: int

+create_head(highway_type, config, kwargs) : : Module

creates creates

>_threshold: float
+general_dropout: float
+exit_strategy: str

+exits: List[Tuple]

+exit_list: List[int]

HighwayConv1_1 HighwayConv2_1

~conv1: Sequential
-proj: Conv2d
-conv2: Sequential
-drop: Dropout

~conv1: Sequential
~conv2: Sequential
~drop: Dropout

+forward(x, H, W) : : Tensor
+forward(x, H, W) : : Tensor

Figure 42: Simplified Attention-Highway class diagram

creates

GlobalSparseAttn

~gkv: Linear
-attn_drop: Dropout
-proj: Linear
-proj_drop: Dropout
-srint

+forward(x, H, W) : : Tensor

67 / 69

Study of Early Exit Neural Networks for Computer Vision DTU
7.2 Profiling additional results
Layer Group | Avg (ms) [Std Dev | Min (ms) | Max (ms) | Count
0 14.925 11.806 11.106 93.273 200
1 15.874 2.500 13.753 24.238 200
2 15.686 2.293 12.780 21.535 200

Table 12: Layer groups profiling with 100 warmup iterations. We see group 0

behaving more stable and slightly faster than the rest

Layer | Avg (ms) | Std Dev [Min (ms) | Max (ms) | Count
Layer 0 15.626 13.778 11.610 92.001 50
Layer_ 1 17.277 18.809 11.106 93.273 50
Layer 2 13.223 2.517 11.197 20.527 50
Layer_ 3 16.323 2.699 14.209 23.681 20
Layer_ 4 15.880 2.657 13.962 24.238 20
Layer 5 15.601 2.374 13.753 22.270 50
Layer 6 15.694 2.253 13.783 22.215 50
Layer 7 15.330 2.366 13.060 21.535 50
Layer_8 15.772 2.218 12.780 21.214 50
Layer 9 16.002 2.394 12.981 21.193 20
Layer_ 10 15.638 2.207 13.099 20.441 20
Layer 11 13.577 2.273 11.160 19.045 50

Table 13: Layer profiling with 100 warmup iterations for the all attention layers

Layer | Avg (ms) [Std Dev | Min (ms) | Max (ms) [Count
Layer 0 14.455 11.135 11.148 89.387 20
Layer 1 17.717 19.433 11.218 98.959 50
Layer 2 13.388 2.435 11.196 22.365 50
Layer 3 18.133 8.951 14.597 77.302 50
Layer 4 16.513 2.473 14.223 25.441 20
Layer 5 16.120 2.140 13.944 23.289 50
Layer 6 16.285 2.215 14.644 23.824 50
Layer 7 15.805 2.396 13.932 22.290 50
Layer_8 15.853 2.407 13.755 23.913 50
Layer 9 15.512 2.498 13.735 22.641 20
Layer_10 15.265 2.420 13.614 22.510 20
Layer 11 13.546 2.393 11.860 21.772 50

Table 14: Layer profiling with 200 warmup iterations for the all attention layers

68 / 69

Study of Early Exit Neural Networks for Computer Vision

DTU

Layer | Avg (ms) | Std Dev [Min (ms) | Max (ms) | Count
Layer_ 0 2.880 9.757 1.284 70.473 50
Layer_1 5.588 17.110 1.134 72.840 20
Layer_2 1.363 0.242 1.119 2.165 50
Layer 3 5.258 2.587 4.684 23.045 50
Layer_ 4 4.911 0.387 4.661 6.328 50
Layer_5 0.074 0.314 4.656 5.996 50
Layer 6 4.865 0.280 4.625 6.075 50
Layer 7 4.652 0.278 4.439 5.717 50
Layer 8 4.625 0.212 4.491 5.911 50
Layer_9 4.639 0.310 4.425 6.012 50
Layer_ 10 4.588 0.164 4.487 5.501 50
Layer 11 1.267 0.204 1.092 2.147 20

Table 15: Attention Latency by Individual Layer for the GPU case. TODO: move
this to an annex for the detailed report of the profile study

69 / 69

	Approval
	Disclaimer
	Acknowledgements
	Abstract
	Introduction
	Background
	Transformers in Computer Vision
	Vision Transformers
	Image Representation
	Architecture
	Model Variations
	Training and Results

	Early Exits in Deep Learning for Computer Vision
	Design and Placement of Early Exits branches
	Training of Early Exit Networks
	Inference in Early Exit Networks

	Tools of the Trade
	ONNX
	PyTorch
	PyTorch meets ONNX
	Flow Control

	Related Work
	Early Models
	Vision Transformers with Early Exit
	The 'LGViT' model
	Summary
	Intermediate Head types

	LGViT implementation
	Structure
	Implementation problems

	CIFAR-100 Dataset

	Results
	Terminology
	Implementation results
	Architecture
	Early Exit Mechanism - Fast Pass Token
	Highway Types
	Parameter Count and Distribution
	ONNX Export

	Benchmarking
	Latency Profiling Study
	Methodology
	Initial Findings and Challenges
	Improved Methodology and Results
	Why did this work?

	GPU Performance Analysis
	Key Findings

	Threshold Study
	Platforms Performance Benchmark (working title)
	Performance on CIFAR100

	Discussion
	On Deployment
	On Performance
	General Remarks

	Future Work
	Bibliography
	Annex
	EEVIT UML diagram of components
	Profiling additional results

