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1 Introduction

Multi-agent planning problems have a run-time directly proportional to the number of agents and the
size of the problem instance, making them challenging to solve with not-infinite time or computational
resources. Traditional approaches to transform the initial state into the goal state (that is, come
up with a sequence of joint state-modifying actions), comes in the form of graph search algorithms,
usually smart search Policy to find the ”path” across the state-space. The challenges mainly concerned
in this approaches are scale (bigger domains mean bigger state-space), stability (actually finding a
solution, if one exists) and efficiency (coming as close to the optimal solution as possible). In this
traditional approach, the entire planning strategy is, however clever, hard-coded. Aiming to simplify
the problem by reducing the search space somehow, comes the proposal of solving asimplified version
of the problem, where each agent (or a subset of agents) plans individually, and then some plan-
merging strategy produces the whole solution. This implies that each individual agent operates on
a partially observable world [RN10] with local information, and thus might produce an plan that is
incompatible with those of other agents.

A different approach is learning the Policy; creating some kind of state-transition function which
given some information about the (local) current state, the goal and perhaps some global information,
provides action to transform the state into another closer to the goal. One take of this approach is
using reinforcement learning (RL) to deduce (learn) this Policy with training on many (typically
1e6 ≤) iterations of problem instances (”episodes” in RL lingo) continuously improving the Policy,
which takes the shape of a neural net which weights get updated from the performance of it in the
episode. Broadly, we can define this Policy as Q : S ×K → A, where the state S and the additional
information K are fed into the Policy, and A is the action most suited to be carried by the agent.

The decision on what information to feed the Policy comes from a different place than the chal-
lenges of the graph-search approaches; The assumption that all agents have access to global infor-
mation all the time does not hold in real world applications, where changes in the environment or
information about other agents’ actions might also not be available. From the need to plan and
operate with partial- or no observability, comes the challenge of training this Policy learning neural
nets with partial information.

Modeling knowledge (or lack thereof) of agents and how this knowledge gets updated is the
motivation behind epistemic modal logic. Perspective knowledge is modelled using local epistemic
states and changes in this states are modelled with epistemic actions, which offer an interesting
proposal to model the available information to be fed at a certain point to the decision making Policy
Q.

This works aims to reproduce the results obtained by [Wal+23], which attempted to include what
they call epistemic priors into the information bundle fed to the Policy in a partially observable state
of an agent (local state in epistemic logic terms). In order to maintain the assumption of partial
observability, such epistemic knowledge must be available in the local state from the beginning.
Chapter 3 aims to present an epistemic formulation of the problem, presenting the epistemic state for
each individual agent in the problem and how it evolves through time by epistemic actions carried
out by her, others or some ”higher power”. Chapter 4 formalizes the framework of the reinforcement
learning implementation, then 5 present our results and our interpretation of them.

2 Problem Definition

Figure 1 displays an instance of the MA planning problem. Solid and dotted circles indicate starting
and goal positions. The problem is, as in [Low+17], a cooperative navigation problem, except that
the environment is only partially observable and the actions stochastic. DEL-based planning provides
tools to solve such a problem, but we will later introduce variations that are not suited for the purely
symbolic approach.
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Figure 1: (a) An example instance of a cooperative navigation problem and (b) a solution for
it.[Wal+23]

3 Dynamic epistemic model - or how do the agents update
their knowledge or beliefs through time

Using the resources provided the the dynamic epistemic logic framework [Bol17] we can model an
agent’s local perspective for any given time, in which we encapsulate the knowledge available to her
at that moment. using both epistemic (local) states and epistemic actions, a way to update the
knowledge model for the agent, the evolution through a time line is modelled.

3.1 Epistemic (local) states

Toy example Consider agent 1’s internal perspective in the context of the scenario presented in
figure 1. If we consider a case were an agent knows only information about herself, her local epistemic
state, the information available then would be her location in the world and whether she is at her
goal or not. Naming the agent i, we would represent the prepositions “agent i is at location l” and
“agent i is at her goal” with @i and gi respectively. Furthermore, we could represent the agent’s
initial local epistemic state si0 as:

@1
0,¬gi

If we considered the case where the agent indeed has access some the location and goal of the other
agent (agent 2) her local state would look like this (provided that the 2nd agent does not start at her
goal location):

@1
0,¬g2,@2

0,¬gj

If the information on the location of another agent is not definite, the local state could encode
instead beliefs about other agents’ position, provided that this knowledge of belief was made available
somehow. Such a state where possible location of other agents are considered would look like this,
for N different consideration of the location of agent 2:

w1 : @1 ∧@2
1

...
wn@

1 ∧@2
n

...
wN@1 ∧@2

N

i i i i

This set of possible worlds, are indistinguishable from one another from agent i’s perspective, hence
the accessibility relation between all of them. If no more information was provided, all of this
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worlds would be equally plausible. If however, more information is made available, the plausibility
distribution might change favoring some world(s) specially.

3.2 Epistemic state update through actions

Commonly referred to as epistemic actions are model-changing operators in accordance to the agents
interaction with the world. In [Bol17] a formal definition is presented, along the mechanics of how
they update a given state using the so-called product update (⊗) operator. In short, given a state s0
and an action a, the updated state s1 is s0 ⊗ a. The way [Bol17] presents an action is as such:

a =
e1 :< pre, post >

...
en :< pre, post >

...
eN :< pre, post >

i i i i

Where e is an event, which can be thought of as different configuration of the action. Any given
state s, updated by this the application of an action would result in a new epistemic state, where the
worlds would be those coming from the application of each individual event on each individual world
(provided the pre condition was met in the original world). For a detailed example on this dynamic,
please refer to [Bol17]. A description of the actions relevant for the model of the problem at hand is
presented hereunder.

[Bol17] offers a classification for the different types of action. Relevant for this work are the ontic
and purely epistemic actions, which are opposed to one another in the way they affect an agent’s
local epistemic state. Purely epistemic actions are those whose post condition can be implied directly
from the precondition, while ontic actions add information to the epistemic state. An example of
an purely epistemic action, relevant for this work is the so called sensing action, in which for the
local state of an agent, if another agent should be within the ”line of sight” (in a partially observable
configuration), then the position of that other agent in that time step is now known by the agent in
question. Later in the section, we will present an epistemic model for the problem at hand and the
relevance of the actions mentioned here will become clearer.

The knowledge agent 1 has access to can change through time, and may or may not influence her
decisions on what action to take herself. Even if she decided not to make any movement herself, her
knowledge (or belief in the case of partial or no observability) can be updated by different kind of
actions. While the action term can be interpreted as an “active” intentional move from the agent,
epistemic actions are both action the agent could execute, actions other agent could execute that alter
the agent’s knowledge or belief, as well as public announcements; actions that do not alter reality,
but might update the knowledge of an agent.

In the context of the multi-agent planning problem, the state-updating actions for any given agent
are: GO, SENSE, and PA (Public Announcement)1.

GO The state for any given agent at a given time t, gets updated at least by two actions, one of
them is Go, which might alter the location of the agent in the grid (up, down, left, right or No-
Operation). The agent decides which event action to take based on some internal decision process, so
that the state update does not expand into multiple possible world in the next time step, but changes
into a single one with the updated location:

GO(i) =
eup :< ⊤, up(@i

t) >

edown :< ⊤, down(@i
t) >

eleft :< ⊤, left(@2
t >)

eright :< ⊤, right(@2
t >)

eno−op :< ⊤, no− op(@2
t >)

PREDICT The state for any given agent at a given time t, gets updated at least by two actions,
the first one is GO, and the second one being PREDICT ; an purely-epistemic action where the
agent considers worlds where one of the possible GO actions (down, up, etc), changing her location.
A representation of the local action, from the perspective of the agent predicting, would look as such:

1This definitions are very informal. A more thorough definition would be similar to this ones here following [Bol17]
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PREDICT (i) =
e1 :< ⊤,@2

t >
...

en :< ⊤,@2
t >

...
eN :< ⊤,@2

t >

i i i i

The dotted line indicate that agent i has to consider all possibilities, at least until some indication of
which one would be more likely.

SENSE The SENSE action models the event where another agent comes within the line of sight
of the agent in question. In an agent i’s local state, if agent j is seen by him, then j’s location is now
a known fact. This action then looks like this:

SENSE =
e1 :< ⊤,@2

t >

PUBLIC ANNOUNCEMENT The only PA action in the scope of the problem, is the one
coming from the mentioned Convention of Operation. as such: all agents know each others starting
positions, i.e. ki@

i
0 for every i ∈ I where I is the agent set. Additionally, they also know each

others goal destinations, but more precisely, each agent knows how other agents would act to get
their respective goals in a conventional way. The prepositions that would follow from this come
from a state transition model C : S ×G− > A, where A would be a list of actions, out of which the
estimated location at each time-step of another agent can be devised, based on the actions that would
transform the given state S0 into the state St. This information would all come from the knowledge
given to the agents prior to run-time (at t=0), and hopefully help in the decision at each time step
of what action to take, provided that there is no more information available. Formally the public
announcement must be a set of prepositions that will hold true throughout run-time:

PA =
@i′

t ∀i ∈ I, ∀t ∈ T1

The apostrophe denotes estimation, in contrast to the real location of a given agent, which is not
known for another given agent for t ̸= 0.

3.3 Decision making with available knowledge

We will now use the different ideas presented about dynamic epistemic logic to model the way an
agent’s knowledge evolves through time. At initial time (t0), the local state for agent i has the
knowledge about her location, whether she’s at her goal location, and similarly for the second agent:

@1
0,¬g2,@2

0,¬gj

the transition from time-step 0 to time-step 1 involves the serial product operation of the state with
some actions. Before delving into the actions, it is important to remember that the agent has a goal
she needs to reach, and therefore her decisions are oriented into reaching that goal. These decisions
will be based on whatever information she has at the moment of deciding, which is the last of the
actions taken before moving onto the next time-step.

The first action that updates the state is the PREDICT action, in which the state expands to
have worlds with all the possible locations of the second agent, based on the possible GO actions she
can perform:

s0 ⊗ PREDICT =
(w1, eup) : @

1
0 ∧ up(@2

0)
...

(w1, eno−op) : @
1
0 ∧ no-op(@2

0)

i i
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The notations up(@2
0), donw(@

2
0), etc. can be replaced by the common @2′

1 since in each world they
denote the same preposition. It is worth noting that all of this worlds are indistinguishable for agent
1 since she does not know the real location of agent 2, and their are all equally plausible.

The plausibility of each world is then adjusted by the second action in the transition, which comes
in the shape of the public announcement preposition relevant for t1, i.e. @2′

1 . The result of product
updating so ⊗ PREDICT ⊗ PA(1) is then:

s0 ⊗ Pred⊗ PA(1) =
(w1, eup, pa1) : @

1
0 ∧@2

1 ∧@2′

1
...

(w1, eno−op, pa1) : @
1
0 ∧@2

1 ∧@2′

1

i i

This update in the local state comes with an additional. It updates not only the information but also
the accessibility relationships by modifying the plausibility of the different worlds. The world where
the conventional location and the predicted location are the same, will be selected as the one with
the maximum plausibility, while the others will be assigned an equally corresponding low values, and
therefore being selected to be the world that will continue to be updated towards t1. We can reduce
the state transformed so far, since the agent is keeping only the world with the highest plausibility:

s0 ⊗ Pred⊗ PA(1) =
maxplaus(w1, ej , pa1) : @

1
0 ∧@2′

1

Lastly, comes the moment for the agent to decide her next move. In this section we will refer to this
state-transition model as Q : S× → A where A is a specific GO action applicable by the agent. For
clarity, we denote the partial transition state we have described so far as s2/3 := s0 ⊗ Pred⊗ PA(1)

s1 = s2/3 ⊗Q(s2/3 =,@2
g)

(maxplaus(w1, ej , pa1), e
1
0) : @

1
1 ∧@2′

1

4 Reinforcement Learning with Epistemic Priors

This section covers the limitations of DEL based planning as described above, and introduces alter-
native techniques for solving problems that are especially impacted by said limitations. Specifically,
multi agent reinforcement learning with epistemic priors (MARL-EP) will be introduced as a way
to compute high performing solutions to problems where the state space is too large for the search
algorithms in DEL based planning, e.g. continuous state spaces.

4.1 Limitations of DEL based planning

The DEL framework presented in section 3 is a powerful decision making tool, allowing the space
for representing state-transition systems to grow linearly with the number of propositions instead of
exponentially. Some state spaces are however still too large for this approach, namely the continuous
state spaces. Interestingly, they are not too large because of the number of propositions, but because
of how the propositions must be defined. Consider an example single agent problem, taking place on
the real line R. The agent starts at position p = 2, and has goal state p = 0. The available actions
are to move by adding a number x ∈ [−1, 1] to the current position, after which a small random
number ϵ ∈ R is added as well. Clearly, the goal can never be reached in a finite amount of steps,
and any attempt at adding non-trivial preconditions to actions leads to an uncountable number of
propositions, except if we add propositions like |p| < 0.01, with which we effectively discretise the state
space again. To address these environments we instead turn to methods that thrive on continuousness
and differentiable functions.
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4.2 Multi Agent Reinforcement Learning

The objective of multi agent reinforcement learning (MARL) is a preferably optimal solution to the
MA planning problem as seen in Figure 1. In the DEL approach, such a solution would be found by
applying a graph-search algorithm to the space of epistemic states induced by the epistemic model. In
MARL, such a solution is a set of policies, one for each agent, πi. The individual policies, πi(ai|si, oi),
are the probabilities of choosing action ai given the current state si and observation oi. A number
of approaches exist to compute these policies, but traditionally do not include the ability for agents
to reason about the knowledge and behavior of other agents. Either they provide global observations
to a central entity at training time, making them unsuitable for limited communication tasks, or
they only condition πi on local state and observation, leading to diminished large-scale cooperation
since large sets of global states with identical local states will be indistinguishable. One approach to
alleviating these issues is to condition the policies on one additional feature, epistemic priors.

4.3 Introducing Epistemic Priors

Epistemic priors ei make it possible for agents to use their knowledge of other agents goals, as well
as their knowledge of the knowledge of other agents, etc. This works by conditioning the policies on
not just states and observations, but also the epistemic priors: πi(ai|si, oi, ei). This enriches the local
observations to more accurately estimate global state, leading to better cooperation.

To estimate ei, it is assumed that all agents share common knowledge of a predetermined conven-
tion of operation. A convention of operation can be seen as a description of how agents are expected
to behave, e.g. in Figure 1, since the detour around the brown circle is larger for Agent 2 than for
Agent 1, the convention could be that the detours are taken by the least inconvenienced agent. This
convention would be common knowledge, so no agent needs to plan for scenarios where the others
do not know of it, though they might not follow it. Viewing it as a function on the state space, a
convention of operation C must be comprehensive, covering all states, deterministic, outputting the
same action for the same input every time, and chainable, able to produce a trajectory by applying it
repeatedly [Wal+23]. Such a convention can be constructed manually, but is in practice instantiated
with a deterministic multi agent planner or RL policy. If using a policy, care must be taken to set
the random seed at the right times to enforce the deterministic property.

4.4 Original MARL-EP Paper Results

Figure 2: Evaluation of trained QMIX agents for different cases from MARL-EP paper
[Wal+23]

The MARL-EP paper compares results between 5 different cases. Case 1 is no sensing, which
is the baseline. Here agents do not have access to other agents location. Case 2 is limited sensing,
where agents have access to other agents location when close. Case 3 is perfect sensing, meaning
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agents always know the location of all other agents. Case 4 is limited sensing, with priors (QMIX-
EP). Agents have access to other agents location when close, and use estimated location via priors
otherwise. Case 5 is no sensing, with priors (QMIX-EP). This is similar to Case 1, but agents use
estimated location of other agents. For a detailed discussion of these results, see [Wal+23].

5 Results

5.1 Experiment Setup

The authors were not able to open source their code at the time that we discussed with them, but
one of them, Jaime Ide, was kind enough to explain what they did high-level and to confirm some
low-level assumptions and details before we implemented.

The entire setup is explained in subsection A.1. However, there are differences between the
original setup in [Wal+23] and this paper, which are discussed in the following. The original authors
do not include the given agent’s prior (joint step from epistemic plan) whereas we do. Including
the agents own prior is conceptually equal to the agent knowing what it ’should do’ according to
the convention of operation. The original authors use a sub-optimal deterministic planner (CBS
with bipartite reduction [WSF20]), whereas we use a pre-trained QMIX model with random seed
set to ensure deterministic outputs. The original authors included the previous action as is normal
when learning Q functions; the code we used did not do this by default and we did not see initial
improvements for doing it, so we left it out, which means technically our neural nets learned Value
functions as defined in reinforcement learning. They trained for 6 million steps whereas we trained
for 4 million, and lastly we used a random seed of 1 since theirs was not included in the paper.

5.2 Results

Figure 3: Reproducing MARL-EP Results with Pretrained QMIX as Planner and 4 Million Episodes.
Numerical values at the 4 million mark are shown in the appendix in Figure 5

The results in Figure 3 are displayed such that the perfecting sensing case (equivalent to the perfor-
mance of our pretrained QMIX planner) is black and the other cases are such that: the lighter colors
have no priors and the darker colors have priors. For example, the no-sensing case (1) is light blue
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and its equivalent priors case (5) is dark blue. For the limited sensing case, we tried field-of-view
(FOV) sizes of 0.3 and 0.5

Figure 4: Performance Comparison of Cases at Episode ≈2.4 Million

The training for case 2a was unexpectedly cut short at 2,430,000 episodes (HPC admin interfer-
ence) and we did not have time to continue training. Therefore, results at the ≈2.4 million mark can
be seen in Figure 4.

Takeaways We see the best performance for perfect sensing and no priors (case 3), while the
worst performance happens with no sensing and no priors (case 1). Generally, as FOV increases,
performance also increases. Priors have higher impact on performance for lower FOV.

5.3 Discussion

The overall trends in the results align with expectations. Adding priors to an otherwise identical
case increases performance, and likewise for increasing the FOV. There are however a few cases that
do not behave as expected. First, adding priors when FOV = 0.5 does not increase performance at
all. This is an extreme example of the general observation that as FOV gets higher, priors are less
effective. A possible explanation of this is that as FOV increases, the amount of position estimations
done by the priors decreases.

We also see no increase in learning per episode when priors are present, as seen in Figure 6. The
authors of the original paper [Wal+23] saw a significant increase in early rate of learning, so the
absence of this behavior in our results is surprising. Generally, when observing minor discrepancies
between the results in Figure 3 and ours we have been able to chalk it up to differences in initial
conditions and random seeds, but for such a noticeable feature to be missing across multiple cases,
there must be a systematic reason.

6 Future Work

While we did reproduce the results of [Wal+23] to a large degree, there are several points of im-
provement to be adressed. Had time permitted, we would have averaged our results over multiple
runs with different seeds, to improve validity. This could easily be done with our code as a starting
point, and would answer whether some of the unexpected observations were simply due to random
chance. Next, using the same solver as in [Wal+23] would make the results more one-to-one compa-
rable. Starting from their code, this means integrating a C++ solver with a Python environment.
Additionally, policy losses (Figure 9 did not converge to 0 except for the perfect sensing (planner)
case, meaning more training will likely improve performance, if only by a marginal amount.

For additional experiments, one could test the relationship between FOV and effectiveness of
adding priors, e.g. testing priors vs. no priors on FOV values in {0, 0.1, . . . , 0.9, 1}. Our results
would suggest an inverse relationship, but are currently unclear. Another approach could be to
qualitatively evaluate the difference in behavior of agents with and without priors. Do their solutions
become more creative, look more coordinated, or do they simply converge more towards the policy
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given by the convention of operation? The latter is not necessarily a negative, as it still leads to
increased global coordination.

A Appendix

A.1 Experiment setup

Random seed 1

Hyperparameters No changes from the defaults used in [VY22]

Provider (planner) of convention of operation (joint-plan) We trained a QMIX model in
MPE Simple Spread environment on 6 million episodes where each episode the agents and landmarks
started at random positions. We stopped training when the evaluation average reward was ≈-115,
which mirrors the results in [VY22].

Code & Architecture We modified the code from [VY22] to include the epistemic priors for
the MPE Simple Spread environment with 3 agents, 3 landmarks, RNN-based local Q-networks,
and 1 environment (i.e. no parallelization since this is not allowed by the code for reasons un-
known to us). The q network, and therefore, policy of each agent is shared by default, which
does not work out in all MARL environments, but happened to in this case, likely due to the
homogenous roles of the agents (all need to reach some landmark). The modified code is here:
https://github.com/ellemcfarlane/logical theories marl [McF23]

MARL-EP input space

Baselines (no-priors) For 3 agents and 3 landmarks, the local observation space has 18 di-
mensions:

1 [

2 current_agent_velocity ,

3 current_agent_position ,

4 all_landmark_positions ,

5 other_agent_positions ,

6 other_agents_communications

7 ]

e.g., for agent 1 with 3 total agents and 3 landmarks:

1 [

2 (agent1 vel x, agent1 vel y),

3 (agent1 pos x, agent1 pos y),

4 (landmark1 pos x, landmark1 pos y),

5 (landmark2 pos x, landmark2 pos y),

6 (landmark3 pos x, landmark3 pos y),

7 (agent2 pos x, agent2 posy),

8 (agent3 pos x, agent3 pos y),

9 (agent2 comm1 , agent2 comm2),

10 (agent3 comm1 , agent3 comm2)

11 ]

Note: in the spread version of MPE, communication did not seem to be used as the values were
always 0, so these were simply placeholder values that the agents ignored.

Limited or no sensing When other agents were outside of the current agent’s field-of-view
(FOV), the positions of the other agents were replaced with placeholder 0’s.
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With priors We appended the priors (relative positions of the other agents, including the given
agent) to the original observation increasing dimensionaltiy by 2*n agents (e.g. 6 in the 3-agent case
for total of 24-dimensional local observations)

Planner inputs The same as the starting observation except that in the no/limited sensing
case, the planner was always given the full observation (i.e. no placeholder values for agents outside
of the FOV) to calculate the ”ideal” plan

Hardware 1 GPU per experiment case: Tesla V100-SXM2-32GB from DTU’s HPC; ≈ 1 hour
per 1 million episodes in epistemic cases

A.2 case values at episode 4 million

Figure 5: Final Results (minus case 2a)
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A.3 Learning rate increases for priors vs non-priors case

Figure 6: No Learning rate increases for priors vs non-priors case

All cases appeared to have a better learning start than the perfect sensing case and there were no
noticeable differences between the priors and no-priors cases.
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A.4 Training Avg Rewards

Figure 7: Training results

Note: as can be seen here, the different cases were trained for varying number of episodes, so for
simplicity in the report, we just reported the 4 million evaluation mark for all cases (except 2a).

A.5 Evaluation Rewards for Planner’s Paths (Epistemic Plans)

Figure 8: No Learning rate increases for priors vs non-priors case

We tracked the rewards of the planner to ensure it always solved the scenarios reasonably well (i.e.
within a given reward range). Note the values exactly overlap in all cases since every case used the
same random seed (i.e. same set of random scenarios) and the planner is deterministic. The blue
shows an area where case 5 and case 4a have data but case 4c did not continue training to this point.
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A.6 Policy Losses

Figure 9: Policy losses

Note that the most stable loss and the one that converged closest to 0 is the pretrained planner
(perfect sensing) case.
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