

# Probabilistic Chan-Vese

## Group 8: S183796 Christine Ibæk Topp Lindenhoff, S212693 Simon Jakob Köhn, S183810 Nicklas Czyfczynski Rasmussen, S222962 Jonathan Mikler

Technical University of Denmark, Kgs. Lyngby, Denmark

#### **1** Introduction

The aim of this project is to implement the Chan-Vese algorithm with a probabilistic curve evolution to segment images based on the article by Dahl and Dahl.[1] The original approach with Chan-Vese segments an image based on mean pixel intensities, whereas the new approach takes the distribution of intensities into account, extended with a patch-based approach based on k-means. energy  $E_{int}$ , moving the snake in the direction of the internal forces  $F_{int}$ :

$$\mathbf{B}_{int}^{new} = (\mathbf{I} - \alpha \mathbf{A} - \beta \mathbf{B})^{-1} \mathbf{B}_{int}$$
(3)

where  $\alpha$  and  $\beta$  are the weighting terms minimizing the length and the curvature of the snake.

To analyze the segmentation abilities of the snake, the recall, precision, accuracy and F-measure are found by comparing a ground truth (drawn by hand) with the snake in 5 different images.



Figure 3:Flower (upper left), true mask (upper right), segmentation with<br/>standard parameters (patch size = 7x7, amount of iterations = 200, alpha<br/>= 0.01, beta = 0.1, and stepsize = 3) (lower left), and segmentation using

#### 2 Method

The probabilistic Chan-Vese curve evolution is driven in the direction of the external force that minimizes the energy. This is given as:

 $F_{ext} = -\nabla E = (P_{in} - P_{out}) \cdot N \tag{1}$ 

where N are the normals of the snake,  $P_{in}$  and  $P_{out}$  are the probabilities of the inside and outside region, given as:

 $P_{in/out} = \mathbf{B}\mathbf{p}_{in/out} = \mathbf{B} \cdot \frac{\mathbf{f}_{in/out}}{\mathbf{f}_{in} + \mathbf{f}_{out}}$ (2)

where f are the frequencies of the pixels being inside or outside the mask, given as:

$$f_{in/out} = \frac{\mathbf{B} \cdot \mathbf{c}_{in/out}}{A_{in/out}}$$

**B** is a binary matrix of size  $k \ge n$ , where k are the discrete intensities or number of clusters and n is the total amount of pixels. The **B**-matrix has a 1 where the  $n^{th}$  pixel is equal to the  $k^{th}$  intensity.

A step-guide for implementing the center-pixel patched based approach is:

- Extract  $M \times M$  patches from image, I
- Perform k-means clustering on patches
- Collect dictionary of cluster centers
- Create image, *s*, with patch centers linked to their cluster center

#### **3** Results

The non-patched based probabilistic Chan-Vese algorithm is implemented :



Figure 1: Initial and final snake (left), probability image with initial (center) and final snake (right). Implemented with 200 iterations and a stepsize of 3.

The patched based probabilitic Chan-Vese algotithm:



```
more customized parameters (patch size = 5x5, amount of iterations = 250, alpha = 0.01, beta = 0.1, and stepsize = 10) (lower right)
```

The snake segmentation abilities for 5 different images is summarized in table 1:

|           | Recall | Precision | Accuracy | F-measure |
|-----------|--------|-----------|----------|-----------|
| Tiger     | 0.91   | 0.94      | 0.98     | 0.92      |
| Flowers   | 0.79   | 0.36      | 0.78     | 0.50      |
| Flowers*  | 0.84   | 0.91      | 0.89     | 0.87      |
| Seafish   | 0.44   | 0.32      | 0.79     | 0.37      |
| Leopard   | 0.88   | 0.51      | 0.86     | 0.64      |
| Moray Eel | 0.60   | 0.37      | 0.80     | 0.46      |

 Table 1:
 Performance metrics of the patch-based algorithm with standard

 parameters for different images, and for an image with more suitable parameters (\*)

#### **4** Discussion

- Convergence of the center-pixel patched based method depends on the distribution of pixel intensities in the foreground
- More iterations are needed to include entire foreground when the object is larger
- The center-pixel patch based approach shows poor performance when the foreground has a multi-modal distribution (e.g. the flower image)
- We note a blurring effect in the pixel-wise patch-based method probability images. This is presumably due to an implementation error.
- Segmentation converges faster for the pixel-wise patched based method compared to the center-pixel patched based method

### **5** Conclusion

The main conclusion points are:

- The patched based method appears to perform better than the non-patched method
- The highest accuracy is obtained for image foregrounds

- Create matrix **B** of size  $nr_{clusters} \times n$ , equal to 1 where the  $n^{th}$  pixel corresponds to the dictionary element
- Find dictionary probabilities

The dictionary probabilities. reshaped to the image, are then used in equation 2 to update the snake.

To add robustness in the curve evolution, regularization terms are used that minimize the internal



Figure 2: Left & middle: center pixel patch aproach with 200 iterations, right: individual pixel patch approach with 75 iterations. Both have 100 clusters, patchsize of 5x5, and a stepsize of 3.

An example is shown of the ground truth and snake estimate, drawn on an image of two flowers, in figure 3:

- with uni-modal pixel distributions
- The pixel-wise patch approach showed poorer results in the posterior probability image than the center-pixel patch approach. The snake however fits better for the pixel-wise case.

#### **Bibliography**

[1] Vedrana Andersen Dahl. *A Probabilistic Framework for Curve Evolution*. Ed. by Anders Bjorholm Dahl.

**DTU Space** National Space Institute **DTU Space** National Space Institute **DTU Space** National Space Institute **DTU Space** National Space Institute