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3D object detection is crucial for having situational awareness in AVs. 
Traditionally, stereo vision and LiDAR have been used, but monocular 
cameras offer a simpler, more cost-effective and easier to integrate 
alternative. Hence, work in 3D object recognition from this source is 
relevant.
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Dataset: ~7500 KITTI rgb images (375x1242)
● Training: 49.6%, Validation: 50.4%
Infrastructure:
● DTU’s HPC + Weights & Biases + Hydra
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RESULTS - Inference

CONCLUSIONS
- Successfully trained and evaluated monocular 3D object detection models based on MonoDETR.
- The semi-depth guided model is more stable in training across learning rates with similar best precision 

(mAP). This is related to the depth predictor’s training loss gradient paths.
- The ResNet 50 backbone represented ~50% of  the parameters and inference time in the baseline.
- ResNet 34 and 18 greatly reduces inference time without significantly affecting precision (mAP).
- The bipartite matching involved in the loss makes DETR models training unstable.
- The RT-DETR hybrid visual encoder results in worse visual queries, reducing performance.

Main contributions:
● Investigation of  backbone and depth guidance impact.
● Integration of  RT-DETR hybrid visual encoder for improved speed.
● Excluding depth guidance (semi and fully disconnected)
● Training optimization with Cube R-CNN 3D loss
● Inference evaluation with integrated DeepSpeed Profiler.

This works investigates modification to the MonoDETR architecture, a 
model aimed to make monocular camera 3D object detections.
The approaches taken:
● Modifying the information channels in the original model
● Replacing certain parts of  the model to assess its impact on inference 

time, model size and performance (depth guidance, RT-DETR)
● Implementing a different set of  losses leveraging on the idea of  

disentangled loss. (Cube R-CNN)
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Val, AP 3D BB
Easy - Mod - Hard

MonoDETR (lr=2e-4) 30.46, 23.18, 18.65

MonoDETR (lr=4e-4) 18.75 - 14.96 - 13.70

MonoDETR-SDG (lr=2e-4)
(w. semi depth guidance)

28.73 - 22.55 - 19.06

MonoDETR-SDG (lr=4e-4) 27.22 - 22.30 - 18.90

MonoDETR-WODG (lr=2e-4)
(w/o depth guidance)

22.35 - 18.94 - 16.11

MonoDETR-WODG (lr=4e-4) 25.46 - 20.89 - 18.19

Mono-RT-DETR (lr=4e-4) 10.19 - 08.21 - 07.47

MonoDETR-SDG
Resnet18 (lr=4e-4)

28.61 - 22.32 - 19.09

MonoDETR-SDG
Resnet34 (lr=4e-4)

25.72 - 22.60 - 19.19

Individual 
losses

Red blocks mark the depth guide part removed.
The red dotted line denotes the remaining link to the depth 
loss for semi-depth guidance.

Green = ground truth
Purple = prediction
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RT-DETR hybrid encoder [3]
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Visual encoder comparison
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Method
(from papers)

Val, AP 3D BB
Easy - Mod - Hard

Cube R-CNN [2] 23.59 - 15.01 - 12.56

MonoDETR [1] 25.00 - 16.47 - 13.58

Precision versus inference performance

Batch Size 16 Epochs 195

Learning Rates 2e-4
4e-4 Weight Decay 1e-4


