

BACKGROUND

3D object detection is crucial for having situational awareness in AVs. Traditionally, stereo vision and LiDAR have been used, but monocular cameras offer a simpler, more cost-effective and easier to integrate alternative. Hence, work in 3D object recognition from this source is relevant.

This works investigates modification to the MonoDETR architecture, a model aimed to make monocular camera 3D object detections. The approaches taken:

- Modifying the information channels in the original model
- Replacing certain parts of the model to assess its impact on inference time, model size and performance (depth guidance, RT-DETR)
- Implementing a different set of losses leveraging on the idea of disentangled loss. (Cube R-CNN)

Main contributions:

- Investigation of backbone and depth guidance impact.
- Integration of RT-DETR hybrid visual encoder for improved speed.
- Excluding depth guidance (semi and fully disconnected)
- Training optimization with Cube R-CNN 3D loss
- Inference evaluation with integrated DeepSpeed Profiler.

RESULTS - Quantitative

Model validation performance 3D Bounding Box

Method (from papers)	Val, AP 3D BB Easy - Mod - Hard		
Cube R-CNN [2]	23.59 - 15.01 - 12.56		
MonoDETR [1]	25.00 - 16.47 - 13.58		
Method (ours)	Val, AP 3D BB Easy - Mod - Hard		
MonoDETR (Ir=2e-4)	30.46, 23.18, 18.65		
MonoDETR (Ir=4e-4)	18.75 - 14.96 - 13.70		
MonoDETR-SDG (<i>Ir=2e-4</i>) (w. semi depth guidance)	28.73 - 22.55 - 19.06		
MonoDETR-SDG (Ir=4e-4)	27.22 - 22.30 - 18.90		
MonoDETR-WODG (lr=2e-4) (w/o depth guidance)	22.35 - 18.94 - 16.11		
MonoDETR-WODG (Ir=4e-4)	25.46 - 20.89 - 18.19		
Mono-RT-DETR (Ir=4e-4)	10.19 - 08.21 - 07.47		
MonoDETR-SDG Resnet18 (Ir=4e-4)	28.61 - 22.32 - 19.09		

REFERENCES

MonoDETR-SDG Resnet34 (Ir=4e-4) 25.72 - 22.60 - 19.19

[1] Zhang, R., Qiu, H., Wang, T., Xu, X., Guo, Z., Qiao, Y., Gao, P., & Li, H. (2022). MonoDETR: Depth-guided Transformer for Monocular 3D Object Detection. ICCV 2023 Straub, J., Ravi, N., Johnson, J., & Gkioxari, G. (2023). Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. arXiv preprint arXiv:2207.10660 [3] Zhao, Y., Lv, W., Xu, S., Wei, J., Wang, G., Dang, Q., Liu, Y., & Chen, J. (2023). DETRs Beat YOLOs on Real-time Object Detection. arXiv preprint arXiv:2304.08069. [4] Reading, C., Harakeh, A., Chae, J., & Waslander, S. L. (2021). Categorical Depth Distribution Network for Monocular 3D Object Detection. arXiv preprint arXiv:2103.01100.

MONOCULAR 3D OBJECT DETECTION

Esteban Zamora (s222383), Jonathan Mikler (s222962), Lucas M. Sandby (s223093), Rolando Esquivel-Sancho (s230025) DTU Autonomous Systems, Technical University of Denmark

Dataset: ~7500 KITTI rgb images • Training: 49.6%, Validation: 50. Infrastructure:

• DTU's HPC + Weights & Biase

RESULTS - Qualitative

CONCLUSIONS

- Successfully trained and evaluated monocular 3D object detection models based on MonoDETR.
- The semi-depth guided model is more stable in training across learning rates with similar best precision (mAP). This is related to the depth predictor's training loss gradient paths.
- The ResNet 50 backbone represented $\sim 50\%$ of the parameters and inference time in the baseline.
- ResNet 34 and 18 greatly reduces inference time without significantly affecting precision (mAP).
- The bipartite matching involved in the loss makes DETR models training unstable.
- The RT-DETR hybrid visual encoder results in worse visual queries, reducing performance.

TRAINING

s (375x1242)	Batch Size	16	Epochs	195
es + Hvdra	Learning Rates	2e-4 4e-4	Weight Decay	1e-4